On the formation of pulses of coherent radiation in weakly inverted media

A change in the character of maser generation in a two-level system is found when the initial population inversion exceeds some threshold value equal to the square root of the total number of atoms. Above this threshold, the number of photons begins to grow exponentially with time and the pulse with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2013
Hauptverfasser: Kirichok, A.V., Kuklin, V.M., Mischin, A.V., Pryjmak, A.V., Zagorodny, A.G.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/112159
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On the formation of pulses of coherent radiation in weakly inverted media / A.V. Kirichok, V.M. Kuklin, A.V. Mischin, A.V. Pryjmak, A.G. Zagorodny // Вопросы атомной науки и техники. — 2013. — № 4. — С. 267-271. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-112159
record_format dspace
spelling irk-123456789-1121592017-01-18T03:03:58Z On the formation of pulses of coherent radiation in weakly inverted media Kirichok, A.V. Kuklin, V.M. Mischin, A.V. Pryjmak, A.V. Zagorodny, A.G. Нелинейные процессы в плазменных средах A change in the character of maser generation in a two-level system is found when the initial population inversion exceeds some threshold value equal to the square root of the total number of atoms. Above this threshold, the number of photons begins to grow exponentially with time and the pulse with short leading edge and broadened trailing edge is generated. In this work, we attempt to explain the nature of this threshold. Coherent pulse duration, estimated by its half-width, increases significantly with increasing inversion, if all other parameters are fixed and the absorption is neglected. The inclusion of the energy loss of photons leads to the fact that the duration of coherent pulse is almost constant with increasing inversion, at least well away from the threshold. Виявлено зміну характеру процесу генерації випромінювання в дворівневій системі при перевищенні початкової інверсії заселеності величини, що дорівнює кореню квадратному з повного числа станів. При перевищенні цього порога число квантів починає рости з часом за експонентою. Зроблена спроба пояснити природу цього порога: при його перевищенні виникає генерація когерентного випромінювання у вигляді імпульсів з коротким переднім фронтом і протяжним заднім фронтом. Якщо всі параметри, окрім інверсії, зафіксувати, то з подальшим ростом інверсії при відсутності поглинання тривалість когерентного імпульсу, оцінена за його напівшириною, помітно збільшується. Урахування втрат енергії квантів призводить до того, що тривалість когерентного імпульсу практично не змінюється при зростанні інверсії, принаймні, досить далеко від порога. Обнаружено изменение характера процесса генерации излучения в двухуровневой системе при превышении начальной инверсии заселенностей величины, равной корню квадратному из полного числа состояний. При превышении этого порога число квантов начинает расти экспоненциально со временем. Сделана попытка пояснить природу этого порога: при его превышении возникает генерация когерентного излучения в виде импульсов с коротким передним фронтом и протяженным задним фронтом. Если все параметры, кроме инверсии, зафиксировать, то с ростом инверсии в отсутствие поглощения длительность когерентного импульса, оцененная по его полуширине, заметно увеличивается. Учет потерь энергии квантов приводит к тому, что длительность когерентного импульса практически не изменяется при росте инверсии, по крайней мере, достаточно далеко от порога. 2013 Article On the formation of pulses of coherent radiation in weakly inverted media / A.V. Kirichok, V.M. Kuklin, A.V. Mischin, A.V. Pryjmak, A.G. Zagorodny // Вопросы атомной науки и техники. — 2013. — № 4. — С. 267-271. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 42.50.Fx http://dspace.nbuv.gov.ua/handle/123456789/112159 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Нелинейные процессы в плазменных средах
Нелинейные процессы в плазменных средах
spellingShingle Нелинейные процессы в плазменных средах
Нелинейные процессы в плазменных средах
Kirichok, A.V.
Kuklin, V.M.
Mischin, A.V.
Pryjmak, A.V.
Zagorodny, A.G.
On the formation of pulses of coherent radiation in weakly inverted media
Вопросы атомной науки и техники
description A change in the character of maser generation in a two-level system is found when the initial population inversion exceeds some threshold value equal to the square root of the total number of atoms. Above this threshold, the number of photons begins to grow exponentially with time and the pulse with short leading edge and broadened trailing edge is generated. In this work, we attempt to explain the nature of this threshold. Coherent pulse duration, estimated by its half-width, increases significantly with increasing inversion, if all other parameters are fixed and the absorption is neglected. The inclusion of the energy loss of photons leads to the fact that the duration of coherent pulse is almost constant with increasing inversion, at least well away from the threshold.
format Article
author Kirichok, A.V.
Kuklin, V.M.
Mischin, A.V.
Pryjmak, A.V.
Zagorodny, A.G.
author_facet Kirichok, A.V.
Kuklin, V.M.
Mischin, A.V.
Pryjmak, A.V.
Zagorodny, A.G.
author_sort Kirichok, A.V.
title On the formation of pulses of coherent radiation in weakly inverted media
title_short On the formation of pulses of coherent radiation in weakly inverted media
title_full On the formation of pulses of coherent radiation in weakly inverted media
title_fullStr On the formation of pulses of coherent radiation in weakly inverted media
title_full_unstemmed On the formation of pulses of coherent radiation in weakly inverted media
title_sort on the formation of pulses of coherent radiation in weakly inverted media
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2013
topic_facet Нелинейные процессы в плазменных средах
url http://dspace.nbuv.gov.ua/handle/123456789/112159
citation_txt On the formation of pulses of coherent radiation in weakly inverted media / A.V. Kirichok, V.M. Kuklin, A.V. Mischin, A.V. Pryjmak, A.G. Zagorodny // Вопросы атомной науки и техники. — 2013. — № 4. — С. 267-271. — Бібліогр.: 11 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT kirichokav ontheformationofpulsesofcoherentradiationinweaklyinvertedmedia
AT kuklinvm ontheformationofpulsesofcoherentradiationinweaklyinvertedmedia
AT mischinav ontheformationofpulsesofcoherentradiationinweaklyinvertedmedia
AT pryjmakav ontheformationofpulsesofcoherentradiationinweaklyinvertedmedia
AT zagorodnyag ontheformationofpulsesofcoherentradiationinweaklyinvertedmedia
first_indexed 2025-07-08T03:28:46Z
last_indexed 2025-07-08T03:28:46Z
_version_ 1837047823259926528
fulltext ISSN 1562-6016. ВАНТ. 2013. №4(86) 267 ON THE FORMATION OF PULSES OF COHERENT RADIATION IN WEAKLY INVERTED MEDIA A.V. Kirichok*, V.M. Kuklin*, A.V. Mischin*, A.V. Pryjmak*, A.G. Zagorodny** *Kharkov National University, Institute for High Technologies, Kharkov, Ukraine; **Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine E-mail: kuklinvm1@rambler.ru A change in the character of maser generation in a two-level system is found when the initial population inver- sion exceeds some threshold value equal to the square root of the total number of atoms. Above this threshold, the number of photons begins to grow exponentially with time and the pulse with short leading edge and broadened trailing edge is generated. In this work, we attempt to explain the nature of this threshold. Coherent pulse duration, estimated by its half-width, increases significantly with increasing inversion, if all other parameters are fixed and the absorption is neglected. The inclusion of the energy loss of photons leads to the fact that the duration of coherent pulse is almost constant with increasing inversion, at least well away from the threshold. PACS: 42.50.Fx INTRODUCTION Description of physical phenomena based on the systems of partial differential equations, derived from the observations and experimental facts, often conceals from an investigator some essential features, especially in those cases, when the researchers do not expect to find anomalies and qualitative changes in the dynamics of systems in given range of variables and parameters. Namely such a case of unusual behavior of a two-level quantum system was found in attempting to separate a coherent component from the total radiation flow. In the beginning of the past century, A. Einstein has proposed the model of two-level system, which has demonstrated the possibility of generation of both spon- taneous and induced (stimulated) emission when the initial population inversion is sufficiently large [1]. Usually, the term spontaneous emission denotes the emission of oscillator (or other emitter) which not forced by external field of the same frequency. As for other influences on the characteristics of the spontane- ous emission, there is nothing to say definitely. Al- though the dynamics of spontaneous processes usually shows a steady recurrence and invariance, there is evi- dent [2] that the characteristics of the spontaneous proc- esses can vary with change of environment. By induced or simulated emission is usually meant the emission produced because of an external field action on the emitting source at the radiation frequency. There were difficulties in the quantum description with interpretation of the stimulated emission as coher- ent, where in contrast to the classical case it was impos- sible to say anything about the phases of the fields emit- ted by individual atoms and molecules. However, C. Townes believed that "… the energy delivered by the molecular systems has the same field distribution and frequency as the stimulating radiation and hence a con- stant (possibly zero) phase difference" [3]. If we assume, relying upon the results of the studies of fluctuation correlations in the laser radiation [4], that a stimulated emission has a high proportion of the co- herent component, one can find a threshold of coherent radiation at a certain critical value of population inver- sion [5]. The specific feature of this threshold is that it follows from the condition that the initial value of the population inversion is equal to the square root of the total number of states. On the other hand, the change in the nature of the process near the threshold is evident, even without making any other assumptions. Above this threshold, the number of photons begins to grow expo- nentially with time. Herewith, below the threshold there no exponential growth. It is known that at low levels of spontaneous com- ponent and far above the maser generation threshold the number of photons growths exponentially and the radia- tion is largely a coherent [6, 7]. The meaningful indica- tor of the collective character of stimulated emission is the so-called photon degeneracy, which is defined as the average photon number contained in a single mode of optical field (see, for example [8]). For the incoherent light, this parameter does not exceed unity, but for even the simplest He-Ne maser it reaches the value of 1210 as was shown in the early works (see [6]). It is of interest to go further and analyze the conse- quences of consideration of the spontaneous emission as a random process (at least, in a homogeneous medium) and induced process as a coherent process. It is clear that the separation of total radiation into two category: the stimulated – coherent and spontaneous – random or incoherent will be idealized simplification. However, such separation may explain, at least qualitatively, the nature of the radiation emitted by two-level quantum system near to exposed threshold. Another indirect proof of the existence of such a threshold is the following observation. The intensity of the spontaneous emission, which is non-synchronized (randomly distributed) over oscillators phases is known to be proportional to their number. The intensity of the coherent stimulated emission is proportional in turn to the square of the number of oscillators. It is easy to see that the exposed threshold corresponds to the case when the intensity of spontaneous and stimulated coherent radiation become equal. In [5] we have shown that under these conditions the pulse of coherent radiation with a characteristic profile is formed when the initial population inversion slightly exceeds the threshold. The leading edge of the pulse due to the exponential growth of the field is very sharp due to the exponential growth of the field, and the trailing edge is rather broadened. Further overriding of the thre- shold, that is growing of the initial population inversion, ISSN 1562-6016. ВАНТ. 2013. №4(86) 268 results in the ratio of the trailing edge duration to the leading edge duration becomes greater. At large times the incoherent radiation dominates. Because very small value of the initial population inversion can provide generation of pulses of coherent radiation, it is of interest to determine the shape of these pulses for different values of the initial population in- version levels and when the field energy absorption should be taken into account. These pulses can be eas- ily detected in experiments. In addition, after experi- mental validation of this model, it will be possible to use these approaches for analysis of the cosmic radia- tion that might help explain such abundance of coherent radiation sources in space. In this paper, we study the characteristics of the pulses of coherent radiation as a function of the initial inversion and absorption level in the system. The dy- namics of the emission process in the simplified model is compared with the dynamics of change in the number of quanta in the traditional model, where the separation into coherent and incoherent components is not carried out. 1. TRADITIONAL DESCRIPTION OF TWO-LEVEL SYSTEM Following to A. Einstein [1], a two-level system with transition frequency 2 1 12ε ε ω− = h can be de- scribed by following set of equations: 2 21 21 2 12 1/ ( )k kn t u w N n w N n∂ ∂ = − + ⋅ ⋅ + ⋅ ⋅ , (1) 1 12 1 21 21 2/ ( )k kn t w N n u w N n∂ ∂ = − ⋅ ⋅ + + ⋅ ⋅ , where the sum of level populations 1 2n n N+ = remains constant, 21 2u n is the rate of change in the number den- sity of atoms due to spontaneous emission. The rates of change in level population due to stimulated emission and absorption are 21 2kw N n and 12 1kw N n corre- spodingly. The number of quanta kN on the transition frequency kω is governed by the equation 21 21 2 12 1( ) ( )k k k N u w N n w N n t ∂ = + ⋅ ⋅ − ⋅ ⋅ ∂ . (2) The losses of energy in active media are caused mainly by radiation outcome from a resonator. These radiative losses can be calculated by imposing the cor- rect boundary conditions on the field. Thus, they can be estimated in rather common form with the following parameter: 2 2 1 [ ( , )] 4 1 (| | | | ) , 8 S V kE Hds k E H dv ω ωε ωδ π ω π ∂ ∂ = × × ∂∂ × + ∫∫ ∫∫∫ r r r r r r (3) i.e. as the ratio of the energy flow passing through the resonator mirrors to the total field energy within resona- tor. It is important, that the characteristic size of the resonator L should be much less than the characteristic time of field variation 2 2 1~| | | |( / )E E tτ −∂ ∂ r r multiplied by the group velocity of oscillations | / |kω∂ ∂ r . In this case the radiative losses through the mirrors can be re- places by distributed losses whithin the resonator vol- ume. The threshold of instability leading to exponentiol growth of coherent emission in this case is defined by condition 0 1THμ μ> (see, for example [6], where 1 21/TH wμ δ= . (4) Equations (1) - (2) can be rewritten in the form 2 2/ kn n Nτ μ∂ ∂ = − − ⋅ , (5) 2/ 2 2 kn Nμ τ μ∂ ∂ = − − ⋅ , (6) 2/ ,k kN n Nτ μ∂ ∂ = + ⋅ (7) where 21w tτ = ⋅ , 21 21 12u w w= = . Since the purpose of this work is to find the threshold of the initial population inversion, which starts the exponential growth of the number of emitted quanta, we will restrict our consid- eration by the case 2 1 1 2,n n n nμ = − << . It follows from Eqs. (5) - (7) that 0 0 0( ) / 2 ( ) / 2k kN N μ μ μ μ= + − ≈ − , and at large times 2 0/ 2 ( ) / 2st st stn N μ μ μ≈ = − ⋅ − , where 0 ( 0)μ μ τ= = , 0 ( 0)k kN N τ= = . Hence, we find the stationary value of the inversion 2 0 0( / 2) ( / 2)st Nμ μ μ= − + . (8) Two cases are of interest. When the initial popula- tion inversion is sufficiently large 2 0( / 2) Nμ >> , it rapidly decreases to its steady-state value 1 0( / )st Nμ μ μ→ = − with 1 0| |stμ μ<< .The number of quanta at this growths exponentially and asymptotically tends to a stationary level 1 0 / 2k kstN N μ→ = . It is ob- viously that in this case the stimulated emission domi- nates (the second terms in r.h.s. of Eqs. (5) - (7)). The second case of interest corresponds to relatively small initial inversion 2 0( / 2) Nμ << . Here, μ tends to its stationary value 1/2( )st Nμ μ→ = − , where 0| |stμ μ> , and the number of quanta reaches the limit 1/2 2k kstN N N→ = . If the spontaneous emission only dominated (the first terms on the r.h.s. of Eqs.(5) - (7)), the characteris- tic time to reach the steady-state number of photons will be of the order of 1 0 0/m Nτ τ μ μ −Δ = > in the first case and 1 01/ Nτ μ −Δ < in the second case, where 1 0μ − is the characteristic time of exponential growth of the number of photons in the first case. This means that the exponential growth of the number of photons in the second case is suppressed and the role of the second terms in r.h.s. of Eqs. (5) - (6) comes to sta- bilize the number of particles and the inversion level due to the absorption process. Thus, it is clear that the scenario of the process changes, if the initial value of the inversion μ0 is more or less thana threshold value [5]: 1/2 2 2TH Nμ = . (9) The suppression of the exponential growth of the number of photons when 1/ 2 0 2 2TH Nμ μ< = demon- strates not only the changes in scenario of the process, but it suggests that the stimulated emissionis suppressed by preferential growth of spontaneous emission. Indeed, the first term in r.h.s. of Eqs. (5) - (7), which is respon- sible for the spontaneous emission, reduces in version to zero in a very short time 21/ THτ μ< , thus excluding the possibility of exponential growth of the number of pho- tons, which is characteristic for the induced processes. ISSN 1562-6016. ВАНТ. 2013. №4(86) 269 It is useful, at least qualitatively, to examine the na- ture of changes in emission characteristics of an in- verted system near the threshold μTH2. It should be ex- pected also other specific features in the radiation na- ture, including the formation of a short pulse of coherent radiation against the background of incoherent field [5]. 2. QUALITATIVE MODEL OF TWO-LEVEL SYSTEM First of all, in order to understand the further, it should be remembered that the oscillator emits under the action of an external coherent field with the same frequency and phase as the stimulating field, that is, the external radiation and radiation of the oscillator stimu- lated by it occur to be coherent [6, 7]. Moreover, the greater intensity of the coherent component of the ex- ternal field, the more energy the oscillator loses per unit time by radiation. On the other side, the spontaneous emission is the process independent of the external ra- diation field and incoherent, at least for a uniform dis- tribution of emitters. Neglecting the stage when the number of photons is saturated, we can at least qualitatively assume that the terms in r.h.s. of Eq. (1) - (2) proportional to Nk corre- spond to the coherent processes, as well as the photons which number Nk is incorporated in these terms will be assumed coherent. With these general principles in mind, we expand the total number of photons into two components ( ) ( )incoh coh k k kN N N= + and rewrite Eqs. (2)- (3) as follows [11] ( ) ( ) 2 12 1 21 21 2/ ( ) ,coh coh k kn t w N n u w N n∂ ∂ = + ⋅ ⋅ − + ⋅ ⋅ (10) ( ) ( ) 1 12 1 21 21 2/ ( ) ,coh coh k kn t w N n u w N n∂ ∂ = − ⋅ ⋅ + + ⋅ ⋅ (11) ( ) 21 2/ ,incoh kN t u n∂ ∂ = ⋅ (12) ( ) 21 2 12 1/ .coh k k kN t w N n w N n∂ ∂ = ⋅ ⋅ − ⋅ ⋅ (13) Assuming 21 21 12u w w= = and 2 ( ) / 2n N μ= + , we obtain ( ) 2 2/ coh kn n Nτ μ∂ ∂ = − − ⋅ , (14) ( ) 2/ 2 2 coh kn Nμ τ μ∂ ∂ = − − ⋅ , (15) ( ) 2/incoh kN nτ∂ ∂ = (16) ( ) ( )/ ,coh coh k kN Nτ μ∂ ∂ = ⋅ (17) where 1 2N n n= + is a total number of emitters. Let compare the dynamics of the processes de- scribed by Eqs. (14) - (17) and by Eqs. (5) - (7). In order to do this, we represent themas shown in Table: The modelling set of equations with separation of quanta into coherent and incoherent sorts 0/ 2 cT N∂Μ ∂ = − − Μ ⋅Ν , (18) 0/inc incT N θ∂Ν ∂ = − ⋅Ν , (19) /c c cT θ∂Ν ∂ = Μ ⋅Ν − ⋅Ν . (20) Traditional set of equation 1 21 1 1/ 2 2T n∂Μ ∂ = − − Μ ⋅Ν , (21) 1 21 1 1 1/ T n θ∂Ν ∂ = +Μ ⋅Ν − ⋅Ν . (22) where ( ) 0/incoh inc kN μΝ = , ( ) 0/coh c kN μΝ = , 0/μ μΜ = , 1 0/μ μΜ=Μ = 21 0 0T w tμ μ τ= ⋅ ⋅ = ⋅ 1 0/kN μΝ = . The only free parameter convenient for the analysis is 2 0 0/N N μ= . For correct comparison, we assume that the total number of real states is 12 1 2 10N n n= + = , and the threshold inversion is 6 0 10th Nμ = = . Transition to a unified time scale will be carried out as follows 0T τ μ= ⋅ , where T is time for each case. Let choose the following initial values 1( 0) ( 0) 1T TΜ = = Μ = = , 4 0 0( 0) / 3 10 /inc incT μ μΝ = = Ν = ⋅ , 4 0 0( 0) / 3 10 /c cT μ μΝ = = Ν = ⋅ , 4 1 0 0( 0) / 3 10 /kT μ μΝ = = Ν = ⋅ . The radiation losses are taking into account by the term 0/θ δ μ= , where δ is defined in (3). Fig. 1 demonstrates a change in dynamics of the process with increase in the starting population inver- sion (9) simulated by Eqs. (21) - (22), where 0 (30...0.01)N ⊂ . The attention should be given to a change in the rate of emitted quanta with crossing of the threshold (9). For greater values of the initial inversion, the stimulated emission begins to prevail and the regime of exponential growth in the number of quanta becomes more pro- nounced. In the absence of radiative losses, the simulation of Eqs. (18) - (20) shows that after the coherent pulse drops, the spontaneous emission continues to increase. Within framework of the traditional model (21) - (22), absorption restricts the growth of the number of quanta and radiation intensity tends to a stationary level. Fig. 1. Evolution of the value 1 1ln( )dN N dT for different 2 0 1 2 2 1( ) / ( )N n n n n= + − : 1) 0 30N = ; 2) 0 10N = ;3) 0 5N = ;4) 0 2N = ; 5) 0 1N = ; 6) 0 0.5N = ; 7) 0 0.2N = ; 8) 0 0.1N = ; 9) 0 0.03N = However, comparing the dynamics of the processes it can be understood that after the amplitude of the co- herent pulse decreases, the spontaneous emission be- cames dominant. That is, attimes exceeding the duration of the coherent pulse the incoherent radiation prevails. The absorption of photons suppresses the generation, so we choose relatively lowlevel of energy loss, that is 52 10δ = ⋅ and 54 10δ = ⋅ . The generation process in this case keeps the same features, but the absorption limits the lifetime of the generation and the differences between two models areless pronounced. ISSN 1562-6016. ВАНТ. 2013. №4(86) 270 Fig. 2. Evolution of M1 and N1 (dot line), M (dash line), Nc and Ninc (solid and dash-dot line correspondingly) in lossless case ( 0θ = ) and N0 =N/μ2 0 =0.05 Fig. 3. Evolution of M1 and N1 (dot line), M (dash line), Nc and Ninc (solid and dash-dot line correspondingly) for lossless case ( 0θ = ) and 2 0 0/ 0.01N N μ= = Fig. 4. Evolution of M1 and N1 (dot line), M (dash line), Nc and Ninc (solid and dash-dot line correspondingly) with absorption ( 52 10δ = ⋅ ,θ =δ/μ0=0.045) and 2 0 0/ 0.05N N μ= = Fig. 5. Evolution of M1 and N1 (dot line), M (dash line), Nc and Ninc (solid and dash-dot line correspondingly) with absorption (δ = 4⋅105, θ =δ/μ0=0.04) and 2 0 0/ 0.01N N μ= = Now, let discuss the quantitative characteristics of the coherent pulse. Figs. 6 and 7 demonstrate the shape of the coherent pulse in lossless case and in presence of absorption for different initial value of the population inversion. Fig. 6. Evolution of coherent pulse shape in absence of absorption (θ =0) for different values of initial popula- tion inversion 1) 0μ = 62 10⋅ ; 2) 62 10⋅ ; 3) 610 10⋅ ; 4) 620 10⋅ ; 5) 650 10⋅ ; 6) 710 ;7) 72 10⋅ ; 8) 72 10⋅ ; 9) 710 10⋅ Note the fact that in the case of a fixed finite level of loss, the shape and duration of the coherentpulsedoes not change even when the population inversion level increases significantly. Thus, the formation of the lead- ing edge of the pulse is determined by the initial inver- sion level, the duration of its trailing edge is determined mostly by the rate of radiative loss. Fig. 7. Evolution of coherent pulse shape in presence of absorption ( 54 10δ = ⋅ ) for different values of initial population inversion 1) 0μ = 62 10⋅ ; 2) 62 10⋅ ; 3) 610 10⋅ ; 4) 620 10⋅ ; 5) 650 10⋅ ; 6) 710 ; 7) 72 10⋅ ; 8) 72 10⋅ ; 9) 710 10⋅ CONCLUSIONS The threshold of coherent emission generation, dis- cussed in this paper, corresponds to the case when the intensity of spontaneous and stimulated coherent radia- tion become equal. The stimulated emission in this case can be considered as completely coherent or as a set of narrow wave packets of coherent radiation. When the initial population inversion crosses the threshold (9), the ISSN 1562-6016. ВАНТ. 2013. №4(86) 271 process of generation undergoes qualitative changes. The excess of the threshold (9) leads to an exponential growth in the number of quanta. If we make the as- sumption that the stimulated emission is mainly coher- ent, the nature of this threshold can be explained as fol- lows: generation of coherent radiation begins only after crossing of this threshold. In this work, we have tried to develop a qualitative model of this process. It follows from results of numerical simulation that the number of coherent quanta tends to μ0/2 with in- crease of the initial population inversion in agree with the theory of super radiance [9 - 11]. If we fix all pa- rameters except the inversion, the duration of the coher- ent pulse estimated by its half-width significantly in- creases with increasing initial inversion in the absence of absorption. The foregoing estimates of the character- istic times of the process are confirmed by numerical calculations. For relatively small inversion levels 0N Nμ<< << the coherent emission is always presents as a rather short pulse with duration of τ ∼ (μ0/N). At large times τ > (μ0/N) the incoherent radiation domi- nates. Since the model (18) - (20) doesn’t take into ac- count absorption of the incoherent radiation, it becomes inapplicable after this time. It is important to note that the time when the total number of photons reaches the steady state in the model (21) - (22) after exceeding the threshold (9) is comparable with the time when the number of spontaneous photons achieves the same val- ues Δτ ∼ τm =μ0/N in the model (18) - (20). If the absorption is taken into account, even a small, the coherent pulse duration remains almost unchanged with an increase in the population inversion, at least far enough above the threshold. The ratio of the pulse- trailing edge duration to the pulse-leading edge duration (the latter, by the way, is inversely proportional to the initial inversion) is growing with increasing of the initial inversion. The duplication of absorption reduces the pulse duration by half. In an absorbing medium and when with significant overriding of the threshold (9), the difference between the traditional model and our qualitative description become insignificant. REFERENCES 1. A. Einstein. Quantentheorie der Strahlung // Mit- teilungen d. Phys. Ges. Zurich. 1916, № 18; Phys. Zs. 1917, № 18, р. 121. 2. P. Goy, J.M. Raimond, M. Gross, S. Haroche. Ob- servation of Cavity-Enhanced Single-Atom Spon- taneous Emission // Phys. Rev. Lett. 1983, v. 50, iss. 24, p. 1903-1906. 3. C.Η. Τоwnes. Production of Coherent Radiation by Atoms and Molecules // IEEE Spectrum. 1965, iss. 2 (2), p. 30. 4. R. Hanbury Brown, R.Q. Twiss. Interferometry of the intensity fluctuations in light. I. Basic theory: the correlation between photons in coherent beams of radiation"// Proc. of the Royal Society of London. 1957, v. A242 (1230), p. 300-324; Interferometry of the intensity fluctuations in light. II. An experi- mental test of the theory for partially coherent light./ Ibid. 1958, v. A243(1234), p. 291-319. 5. V.M. Kuklin, A.G. Zagorodny. To realization con- dition of maser radiation // XIV Khariton's Topical Scientific Readings "High-Power Pulsed Electrphysics" March 12-16, 2012, Sarov, Russia. 6. G. Birnbaum. Optical masers. New York and Lon- don: Academic Press, 1964. 7. N. Blotmbergen. Nonlinear Optics. A Lecture Note / W.A. Benjamin, Inc. New York-Amsterdam, 1965. 8. G.S. He, S.H. Liu. Physics of Nonlinear optics. World Scientific, Singapore.1999. 9. R.Н. Dicke. Coherence in Spontaneous Radiation Processes // Physical Review. 1953, v. 93, iss. 1, p. 99-110; V.V. Zheleznyakov, V.V. Kocharovskii, V.V. Kocharovskii. Polarization waves and super- radiance in active media // Sov. Phys. Usp. 1989, v. 32, p. 835-870. 10. A.V. Andreev. Optical super radiance: new ideas and new experiments // Sov. Phys. Usp. 1990, v. 33, (12), p. 997-1020. 11. L.I. Men’shikov. Super radiance and related phe- nomena // Phys. Usp. 1999, v. 42, p. 107. Article received 16.04.2013. О ВОЗМОЖНОСТИ ФОРМИРОВАНИЯ ИМПУЛЬСОВ КОГЕРЕНТНОГО ИЗЛУЧЕНИЯ В СЛАБОИНВЕРСНЫХ СРЕДАХ А.В. Киричок, В.М. Куклин, А.В. Мишин, А.В. Приймак, А.Г. Загородний Обнаружено изменение характера процесса генерации излучения в двухуровневой системе при превышении началь- ной инверсии заселенностей величины, равной корню квадратному из полного числа состояний. При превышении этого порога число квантов начинает расти экспоненциально со временем. Сделана попытка пояснить природу этого порога: при его превышении возникает генерация когерентного излучения в виде импульсов с коротким передним фронтом и протяженным задним фронтом. Если все параметры, кроме инверсии, зафиксировать, то с ростом инверсии в отсутствие поглощения длительность когерентного импульса, оцененная по его полуширине, заметно увеличивается. Учет потерь энергии квантов приводит к тому, что длительность когерентного импульса практически не изменяется при росте инвер- сии, по крайней мере, достаточно далеко от порога. ПРО МОЖЛИВІСТЬ ФОРМУВАННЯ ІМПУЛЬСІВ КОГЕРЕНТНОГО ВИПРОМІНЮВАННЯ В СЛАБОІНВЕРСНИХ СЕРЕДОВИЩАХ О.В. Киричок, В.М. Куклін, О.В. Мішин, О.В. Приймак, О.Г. Загородній Виявлено зміну характеру процесу генерації випромінювання в дворівневій системі при перевищенні початкової ін- версії заселеності величини, що дорівнює кореню квадратному з повного числа станів. При перевищенні цього порога число квантів починає рости з часом за експонентою. Зроблена спроба пояснити природу цього порога: при його пере- вищенні виникає генерація когерентного випромінювання у вигляді імпульсів з коротким переднім фронтом і протяж- ним заднім фронтом. Якщо всі параметри, окрім інверсії, зафіксувати, то з подальшим ростом інверсії при відсутності поглинання тривалість когерентного імпульсу, оцінена за його напівшириною, помітно збільшується. Урахування втрат енергії квантів призводить до того, що тривалість когерентного імпульсу практично не змінюється при зростанні інвер- сії, принаймні, досить далеко від порога.