Gas temperature of diffuse negative corona discharge
The emission spectra of the second positive system of nitrogen for the diffuse negative corona discharge in ambient air were studied. The rotational structure of spectral lines was analyzed and the spectra were identified. The calculations, using the model of non-rigid rotor was made. The rotational...
Gespeichert in:
Datum: | 2013 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2013
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/112164 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Gas temperature of diffuse negative corona discharge / O.V. Bolotov, V.I. Golota, S.D. Gurtovoi, Yu.V. Sitnikova, D.V. Moshinskii // Вопросы атомной науки и техники. — 2013. — № 4. — С. 229-232. — Бібліогр.: 13 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-112164 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1121642017-01-18T03:04:05Z Gas temperature of diffuse negative corona discharge Bolotov, O.V. Golota, V.I. Gurtovoi, S.D. Sitnikova, Yu.V. Moshinskii, D.V. Плазменно-пучковый разряд, газовый разряд и плазмохимия The emission spectra of the second positive system of nitrogen for the diffuse negative corona discharge in ambient air were studied. The rotational structure of spectral lines was analyzed and the spectra were identified. The calculations, using the model of non-rigid rotor was made. The rotational temperature of nitrogen molecules was specified. The dependence of rotational temperature on the applied voltage as well as on the discharge operation mode was shown. Досліджено спектри випромінювання негативної корони в дифузній стадії горіння. Проаналізовано розподіл інтенсивності випромінювання в электронно-коливально-обертальних смугах молекулярного азоту. Проведено теоретичний розрахунок інтенсивності ліній в наближенні коливально-обертальної взаємодії і відцентрового розтягування молекул. Визначена обертальна температура молекул азоту в прикатодній області розряду. Встановлена залежність обертальної температури як від режиму горіння розряду, так і від величини напруги, прикладеної до розрядного проміжку. Исследованы спектры излучения отрицательной короны в диффузной стадии горения. Проанализировано распределение интенсивности излучения в электронно-колебательно-вращательных полосах молекулярного азота. Проведен теоретический расчет интенсивности линий в приближении колебательно- вращательного взаимодействия и центробежного растяжения молекул. Определена вращательная температура молекул азота в прикатодной области разряда. Установлена зависимость вращательной температуры как от режима горения разряда, так и от величины напряжения, приложенного к разрядному промежутку. 2013 Article Gas temperature of diffuse negative corona discharge / O.V. Bolotov, V.I. Golota, S.D. Gurtovoi, Yu.V. Sitnikova, D.V. Moshinskii // Вопросы атомной науки и техники. — 2013. — № 4. — С. 229-232. — Бібліогр.: 13 назв. — англ. 1562-6016 PACS: 52.80.Hc http://dspace.nbuv.gov.ua/handle/123456789/112164 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Плазменно-пучковый разряд, газовый разряд и плазмохимия Плазменно-пучковый разряд, газовый разряд и плазмохимия |
spellingShingle |
Плазменно-пучковый разряд, газовый разряд и плазмохимия Плазменно-пучковый разряд, газовый разряд и плазмохимия Bolotov, O.V. Golota, V.I. Gurtovoi, S.D. Sitnikova, Yu.V. Moshinskii, D.V. Gas temperature of diffuse negative corona discharge Вопросы атомной науки и техники |
description |
The emission spectra of the second positive system of nitrogen for the diffuse negative corona discharge in ambient air were studied. The rotational structure of spectral lines was analyzed and the spectra were identified. The calculations, using the model of non-rigid rotor was made. The rotational temperature of nitrogen molecules was specified. The dependence of rotational temperature on the applied voltage as well as on the discharge operation mode was shown. |
format |
Article |
author |
Bolotov, O.V. Golota, V.I. Gurtovoi, S.D. Sitnikova, Yu.V. Moshinskii, D.V. |
author_facet |
Bolotov, O.V. Golota, V.I. Gurtovoi, S.D. Sitnikova, Yu.V. Moshinskii, D.V. |
author_sort |
Bolotov, O.V. |
title |
Gas temperature of diffuse negative corona discharge |
title_short |
Gas temperature of diffuse negative corona discharge |
title_full |
Gas temperature of diffuse negative corona discharge |
title_fullStr |
Gas temperature of diffuse negative corona discharge |
title_full_unstemmed |
Gas temperature of diffuse negative corona discharge |
title_sort |
gas temperature of diffuse negative corona discharge |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2013 |
topic_facet |
Плазменно-пучковый разряд, газовый разряд и плазмохимия |
url |
http://dspace.nbuv.gov.ua/handle/123456789/112164 |
citation_txt |
Gas temperature of diffuse negative corona discharge / O.V. Bolotov, V.I. Golota, S.D. Gurtovoi, Yu.V. Sitnikova, D.V. Moshinskii // Вопросы атомной науки и техники. — 2013. — № 4. — С. 229-232. — Бібліогр.: 13 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT bolotovov gastemperatureofdiffusenegativecoronadischarge AT golotavi gastemperatureofdiffusenegativecoronadischarge AT gurtovoisd gastemperatureofdiffusenegativecoronadischarge AT sitnikovayuv gastemperatureofdiffusenegativecoronadischarge AT moshinskiidv gastemperatureofdiffusenegativecoronadischarge |
first_indexed |
2025-07-08T03:29:10Z |
last_indexed |
2025-07-08T03:29:10Z |
_version_ |
1837047848334524416 |
fulltext |
ISSN 1562-6016. ВАНТ. 2013. №4(86) 229
GAS TEMPERATURE OF DIFFUSE NEGATIVE CORONA DISCHARGE
O.V. Bolotov, V.I. Golota, S.D. Gurtovoi, Yu.V. Sitnikova, D.V. Moshinskii
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
E-mail: bolotov@kipt.kharkov.ua
The emission spectra of the second positive system of nitrogen for the diffuse negative corona discharge in am-
bient air were studied. The rotational structure of spectral lines was analyzed and the spectra were identified. The
calculations, using the model of non-rigid rotor was made. The rotational temperature of nitrogen molecules was
specified. The dependence of rotational temperature on the applied voltage as well as on the discharge operation
mode was shown.
PACS: 52.80.Hc
INTRODUCTION
The widespread use of ozone technologies demands
the new cost-effective methods and systems for ozone
synthesis. The main issue is improvement of the ozone
generator productivity due to reduction of energy con-
sumption for ozone synthesis. Most of ozone generators,
which are produced in the world, use a dielectric barrier
discharge for ozone synthesis. However, in recent years,
much attention was paid to ozone generators which ex-
ploit the barrierless gas discharge, in particular, corona
gas discharge at atmospheric pressure in the pin-to-plate
electrode system [1]. High efficiency of the negative
corona discharge for ozone synthesis in air is realized
due to low energy consumption [2].
In this paper the spectral characteristics for the dif-
fuse stage of the negative corona discharge in air was
investigated.
Negative corona occurs in an electronegative gas
with the pin-to-plate electrode systems when the DC
high voltage negative potential is applied to the pin
electrode. In air at atmospheric pressure the discharge
can operates in self-maintained pulsed mode called
Trichel pulse mode [3]. In this mode the discharge cur-
rent represents a quasi-steady-state sequence of pulses.
In the Trichel pulse mode, the optical radiation pulses
are observed both in the cathode and anode regions of
the short discharge gap [4]. Further increase of the volt-
age leads to transition from the Trichel pulse mode to a
quasi-stationary (diffuse) mode. The direct discharge
current and the diffuse glow from the discharge gap are
the distinguishing features of the diffuse negative co-
rona discharge.
Stable discharge operation [5] should be provided
for correct investigations of the electrodynamic charac-
teristics of the discharge and the spectral characteristics
of discharge radiation. To achieve stable discharge op-
eration, both the point and plane electrodes were spe-
cially processed before experiments. The criteria for
stable discharge operation are the high reproducibility
of the Trichel current pulse waveform and the stable
pulse repetition rate. These parameters are controlled by
the oscilloscope. Also the transition to a spark break-
down should be prevented. To study the spark break-
down transition criteria, the gas temperature in the dis-
charge gap should be measured and monitored, because
the spark breakdown mainly depend on the gas tempera-
ture [6]. There are different methods to measure the
temperature of particles in gas discharge, but the most
popular among them are optical diagnostic methods.
These methods are widely used as they are non-contact,
have no perturbation effects on the object of study and
provide high precision measurements. Gas discharge
emission spectrometry takes a special place among the
optical methods. It allows determining the temperature
of gas particles (molecules), as well as observing the
temperature dynamics in time. In the current work, the
most developed spectrometric method based on meas-
urement of relative intensities in the rotational structure
of (0-0)-band emission spectrum of 2+ nitrogen system
( 3 3u gC BΠ − Π transitions) was used to measure the gas
temperature in discharge. In most practical cases, rota-
tional temperature is similar to the translational tem-
perature (more precision definition of gas temperature
requires detailed review of rotational-translational re-
laxation processes).
1. EXPERIMENT
Experimental study of the emission spectra of the
diffuse negative corona within the wavelength range
(300-400) nm was carried out using the experimental
setup schematically shown in Fig. 1. Spectrometric
study of the discharge was carried out using the optical
bench based on the monochromator-spectrograph "So-
lar-Tii" MSDD-1000 with double dispersion. A double
diffraction grating with 2400 grooves per 1mm was in-
stalled in the monochromator. The reciprocal linear dis-
persion of the diffraction grating is 0.41 nm/mm. A
high-speed photomultiplier tube (PMT) Hamamatsu
R9110 with the spectral band of 185…900 nm and sig-
nal pulse rise time of 2.2τ Γ = ns was installed on the
output slit of the monochromator. The signal from the
photomultiplier was processed by the analog to digital
converter (ADC) Velleman PCS 500, which was con-
nected to a computer. The software PC-Lab2000 was
used to display the digitized data received from the
ADC Velleman PCS 500 on a computer monitor in a
real-time graphic mode and to record the digitized data
into the computer's memory.
Investigations were carried out when the DC high
voltage negative potential was applied to the pin elec-
trode. The voltage on the discharge gap was supplied by
a stabilized high voltage DC power supply with the
maximum amplitude of the output voltage up to 40 kV.
To provide stable diffuse mode of corona discharge the
appropriate voltage (from the range of 5…14 kV) was
chosen. Stable discharge operation mode was controlled
by the digital storage oscilloscope LeCroy WaveJet
324A.
ISSN 1562-6016. ВАНТ. 2013. №4(86) 230
The voltage of the discharge gap was measured us-
ing the high voltage probe Tektronix P6015A. In the
external electric circuit, the ballast resistor R=10 MΩ
was set to limit the discharge current. The average dis-
charge current was measured by a micro-ammeter
M906. The waveform of the current signal was con-
trolled by a digital storage oscilloscope. The width of
the discharge gap between the pin and plate electrodes
was set within the range of 5…15 mm.
Fig. 1. Schematic diagram of the experimental setup
Temporal characteristics of current pulses were
measured using calibrated 50-Ohm current shunts. The
signal was processed in the oscilloscope with the band-
width of 200 MHz and sampling rate of 1 GHz. Tempo-
ral characteristics of the current shunts used in the ex-
periments were calibrated by means of the current shunt
Tektronix CT1, which has the following characteristics:
bandwidth – 25 kHz…1 GHz, pulse rise time – 0.35 ns
(10…90% signal), sensitivity – 5mV/mA.
2. RESULTS
The emission spectrum of the discharge radiation
within the wavelength range of 300…400 nm were reg-
istered. The obtained spectra correspond to the second
positive system of nitrogen (transition С3Пu–В3Пg) [7].
The spectra were registered from the cathode region (at
~ 1 mm from the tip of pin electrode) of the discharge.
The discharge gap was 5 mm. The absolute humidity of
ambient air was 3.4 g/m3. The width of monochromator
slits was 50 μm (output) and 200 μm (input) at the re-
ciprocal linear dispersion of 0.41 nm/mm. The width of
monochromator slits, PMT signal amplification factor
and the photomultiplier supply voltage were kept up at
constant level. The emission spectrum of the discharge
within the wavelength range of 300…400 nm is pre-
sented in Fig. 2 below.
Fig. 2. Emission spectrum of the diffuse negative corona
in air at atmospheric pressure. Cathode region
of the discharge gap (~1 mm from pin electrode)
Partially-resolved rotational spectrum of the
С3Пu(0)–В3Пg(0) transition was used to determine the
rotational temperature. The emission spectrum of the
discharge in the wavelength range of 334…338 nm is
shown in Fig. 3.
0
50
100
150
200
250
334 334.5 335 335.5 336 336.5 337 337.5 338
(0-0)
I, Arb.un.
λ,nm
Fig. 3. Emission spectrum of the discharge
within the wavelength range of 334…338 nm.
ADC sensitivity is 50 /mV div
The fragments of the spectrum within
334…335,8 nm wavelength range were recorded at the
maximum sensitivity of the ADC for more detailed in-
vestigation of the rotational structure of the spectrum.
The fragment is shown in Fig. 4.
Fig. 4. The fragment of negative corona emission
spectra. ADC sensitivity 5 /mV div . The R-branch
rotational lines of С3Пu(0)–В3Пg(0) transition are
partially resolved (the range of corresponding
rotational numbers is J=20…29)
Theoretical calculation of relative intensities of rota-
tional lines was carried out for more detailed identifica-
tion of spectral lines and their comparison with experi-
mental results. The calculation was performed using the
reference constants [8]. According to the Born-
Oppenheimer approach, the term of vibrational-
rotational state (J, v) for the given electronic state, is
given by [9]
E = Te + Gv + FJ, (1)
where Te is the electron energy, Gv is the vibrational
energy, Fj is the rotational energy.
The vibrational energy (in the first approximation) is
given by [9]:
Gv = ωe (v +1/2) - ωexe (v +1/2)2, (2)
where v is the vibrational quantum number, ωe is the
energy of vibrational quanta, ωexe is the anharmonicity
constant.
In the non-rigid rotator approach the rotational en-
ergy of molecule is given by [9]:
ISSN 1562-6016. ВАНТ. 2013. №4(86) 231
( ) ( ) 2
1 1jF B J J D J Jν= ⋅ ⋅ + − ⋅ ⋅ +⎡ ⎤⎣ ⎦ , (3)
where Bυ=Be-αe(v +1/2) is the rotational constant (in the
approach of vibrational-rotational interaction), αe is the
parameter characterizing the dependence of rotational
constant on vibrational excitation, J is the rotational
quantum number, D is the centrifugal distortion con-
stant.
Using the Fortr diagrams for the linear molecule N2
at the electronic transition between C 3Пu and B3Пg
states, the correspondence of rotational line wavelength
to the specific rotational quantum numbers J was deter-
mined. The values of ΔJ = (-1, 0, +1) were allowed ac-
cording to the selection rules. These rules form P, Q and
R branches in the rotational structure of the spectrum.
When the wavelength of rotational transitions and its
respective rotational quantum numbers are determined,
the intensity of rotational lines can be calculated. The
radiation intensity of single rotational lines at elec-
tronic-vibrational transition is given by [10],
' '' ' ' ''J J J J J
hcI N A
λ
= ⋅ ⋅ , (4)
where
'
'
'~ (2 1) exp j
J
rot rot
FBN J
kT kT
ν ⎛ ⎞
⋅ + ⋅ −⎜ ⎟
⎝ ⎠
is the population
of upper rotational level, Trot − rotational temperature,
'
4
' ''
3 '''
64
3 2 1
J J
J J
SA
h J
π
λ
= ⋅
+
is the probability of rotational
transition (J'-J'') [11], λ is the transition wavelength, h is
the Planck constant, c is the speed of light , ' ''J JS is the
Henley London intensity factor.
Thus, the intensity of single rotational line is given
by the following expression:
'
4
' ''( ) ~ exp .j
J J
rot rot
FBI S
kT kT
νλ λ − ⎛ ⎞
⋅ ⋅ ⋅ −⎜ ⎟
⎝ ⎠
(5)
The calculation of rotational spectra at different Trot
showed that there is a spectra range in which the inten-
sity of R-branch lines dominates the intensities of P and
Q branches. It was found that only single lines of R-
branch with rotational quantum numbers J = (20-29)
should be used for analysis of the spectra obtained in the
experiment. The fragment of rotational structure for the
spectrum of С3Пu(0)–В3Пg(0) transition is shown in
Fig. 5.
0
50
100
150
200
250
300
350
400
334 334.2 334.4 334.6 334.8 335 335.2 335.4
Trot=655 K
Trot=800 K
Trot=700 K
Trot=600 K
Experimental data
I, Arb.un.
λ, nm
Theoretical results for
R-branch of (0-0) transition
Fig. 5. Rotational structure for the spectrum of
С3Пu(0)–В3Пg(0) electron-vibrational transition (solid
line). The calculated distribution of intensities for rota-
tional lines on the R-branch is marked with points
The distribution of intensities for rotational lines on
the R-branch is marked with points. The intensity of
rotational lines was calculated using different values of
rotational temperature Trot.
Analysis of the presented in Fig. 5 spectrum shows a
close correspondence of experimental data to theoretical
results at Trot=655 K. Fig. 5 also shows that the distribu-
tion of intensities for rotational lines is significantly
changed together with the rotational temperature value.
There is other approach to determine the rotational
temperature from the relative intensities of rotational
lines. On the basis of the above mentioned theoretical
model, the following equation can be given using (5),
and assuming for the R-branch (for sufficiently
large 'J ),
' '' ~ 'J JS J [12]:
(6)
where '
1J and '
2J is the rotational numbers correspond-
ing to separate rotational lines, 1λ and 2λ is the wave-
lengths of selected lines, ( )1 1I λ , ( )2 2I λ is the intensi-
ties of spectral lines obtained from the experiment.
The Trot can be determined by substituting the measured
relative intensities of the rotational lines to the equation
(6). The calculated values of nitrogen rotational tem-
perature at different parameters of diffuse negative co-
rona discharge are presented in Table.
Discharge parameters Rotational temperature, Trot
U=14,2 kV, I=170 µA 623 К
U=14.6 kV, I=215 µA 645 К
CONCLUSIONS
The emission spectra of the nitrogen second positive
system at diffuse negative corona discharge were stud-
ied. Distribution of emission intensity in electronic vi-
brational-rotational bands corresponding to 3
uC Π -
3
gB Π transitions of molecular nitrogen was analyzed. A
comparison between experimental data and theoretical
results was made in the approach with vibrational-
rotational interaction and centrifugal distortion of mole-
cules. The rotational temperature of nitrogen molecules
was obtained on the basis of spectral rotational structure
analysis. The dependence of rotational temperature on
the discharge operation mode, as well as on the applied
voltage value was shown. It was shown that rotational
temperature of nitrogen molecules is increased together
with applied voltage.
REFERENCES
1. V.I. Golota, B.B. Kodolin, V.I. Karas, I.A. Paschenko,
S.G. Pugach, A.V. Jakovlev. Ozone synthesis in
point-to-plane gas discharge in air // Problems of
Atomic Science and Technology. Ser. «Plasma Elec-
tronics and New Methods of Acceleration». 2003,
v. 4, p. 254-257.
2. A.V. Tokarev. Comparative characteristics of ozone
synthesis in corona discharges // Bulletin of KRSU.
2008, v. 8, № 10 (in Russian).
( )
( )
4 '
1 1 1 2 ' ' ' '
1 1 2 24 '
2 2 2 1
2.618ln ( 1) ( 1) ,
rot
I J K J J J J
I J T
λ λ
λ λ
⎡ ⎤⋅ ⋅
⎡ ⎤= − + − +⎢ ⎥ ⎣ ⎦⋅ ⋅⎣ ⎦
ISSN 1562-6016. ВАНТ. 2013. №4(86) 232
3. G.W. Trichel. The mechanism of the negative point
to plane corona near onset // Phys. Rev. 1938, v. 54,
р. 1078.
4. V.I. Karas’, V.I. Golota, O.V. Bolotov, B.B. Kado-
lin, D.V. Kudin. Specific features of radiation from a
negative air corona operating in the Trichel-pulse
mode // Plasma Physics Reports. 2008, v. 34, № 10,
p. 951-958.
5. O.V. Bolotov, V.I. Golota, B.B. Kadolin, V.N. Os-
troushko, L.M. Zavada, A.Ju. Shulika. Experimental
investigations of cathode-directed streamer propaga-
tion in air at high pressure // Problems of Atomic
Science and Technology. Ser. «Plasma Electronics
and New Methods of Acceleration». 2008, № 4,
р. 204.
6. Mario Janda, Adriana Niklova, Viktor Martišovitš,
Zdenko Machala. Transient spark – dc driven nano-
second pulsed discharge in atmospheric air.
HAKONE XII, Kúpeľná Dvorana, Trenčianske
Teplice, 12.-17.09.2010, Slovakia.
7. R.W.B.
8. Pearse, A.G. Gaydon. The identification of molecu-
lar spectra // Chapman and Hall. London, 1976.
9. B.M. Smirnov, A.S. Jacenko. Parameters of gas
dimmers // Plasma Chemistry: 1989, iss. 15, p. 93
(in Russian.)
10. M.A. Elyashevich. Atomic and molecular spectros-
copy. М., 1962 (in Russian).
11. V.N. Ochkin. Spectroscopy of low temperature
plasma. М.: «FIZMATLIT». 2006, p. 472 (in Rus-
sian).
12. L.A. Kuznetsova, N.E. Kuzmenko. Probabilities of
optical transitions in electronic-vibrational-rotational
spectra for diatomic molecules // UFN. 1974, v. 112,
iss. 2 (in Russian).
13. S.V. Pancheshniy, S.M. Starikovskaya, et al. Meas-
uring the temperature of heavy particles in gas dis-
charge by the emission spectrum of the second posi-
tive system of N2 // Methodical textbook. Dolgo-
prudniy, 2001 (in Russian).
Article received 03.06.2013.
ТЕМПЕРАТУРА ГАЗА В ОТРИЦАТЕЛЬНОМ КОРОННОМ РАЗРЯДЕ ДИФФУЗНОЙ СТАДИИ
О.В. Болотов, В.И. Голота, С.Д. Гуртовой, Ю.В. Сытникова, Д.В. Мошинский
Исследованы спектры излучения отрицательной короны в диффузной стадии горения. Проанализирова-
но распределение интенсивности излучения в электронно-колебательно-вращательных полосах молекуляр-
ного азота. Проведен теоретический расчет интенсивности линий в приближении колебательно-
вращательного взаимодействия и центробежного растяжения молекул. Определена вращательная темпера-
тура молекул азота в прикатодной области разряда. Установлена зависимость вращательной температуры
как от режима горения разряда, так и от величины напряжения, приложенного к разрядному промежутку.
ТЕМПЕРАТУРА ГАЗУ У НЕГАТИВНОМУ КОРОННОМУ РОЗРЯДІ ДИФУЗНОЇ СТАДІЇ
О.В. Болотов, В.І. Голота, С.Д. Гуртовой, Ю.В. Ситнікова, Д.В. Мошинський
Досліджено спектри випромінювання негативної корони в дифузній стадії горіння. Проаналізовано роз-
поділ інтенсивності випромінювання в электронно-коливально-обертальних смугах молекулярного азоту.
Проведено теоретичний розрахунок інтенсивності ліній в наближенні коливально-обертальної взаємодії і
відцентрового розтягування молекул. Визначена обертальна температура молекул азоту в прикатодній обла-
сті розряду. Встановлена залежність обертальної температури як від режиму горіння розряду, так і від вели-
чини напруги, прикладеної до розрядного проміжку.
|