The influence of exothermic reactions on the nonequilibrium level of discharge plasma
The comparative analysis of plasma parameters of transverse arc and discharge in the gas channel with liquid wall was made for different working gas and liquids (for air, distilled water and for its mixtures with ethanol). Electronic excitation temperatures Te* of atoms, vibrational Tv* and rotation...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2013
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/112181 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The influence of exothermic reactions on the nonequilibrium level of discharge plasma / V.Ya. Chernyak, V.V. Iukhymenko, I.V. Prysiazhnevych, Eu.V. Martysh // Вопросы атомной науки и техники. — 2013. — № 4. — С. 200-203. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-112181 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1121812017-01-23T22:44:22Z The influence of exothermic reactions on the nonequilibrium level of discharge plasma Chernyak, V.Ya. Iukhymenko, V.V. Prysiazhnevych, I.V. Martysh, Eu.V. Плазменно-пучковый разряд, газовый разряд и плазмохимия The comparative analysis of plasma parameters of transverse arc and discharge in the gas channel with liquid wall was made for different working gas and liquids (for air, distilled water and for its mixtures with ethanol). Electronic excitation temperatures Te* of atoms, vibrational Tv* and rotational Tr* temperatures of molecules in the generated plasma were determined by optical emission spectroscopy. It was shown that both discharges generate nonequilibrium plasma in the case of working gas air and working liquid – distilled water. Adding a fuel (ethanol) into the plasma system with O2 leads to the increasing of rotational and vibrational temperatures of molecules, which became equal to each other within the errors. This may indicate that the exothermic reactions reduce the level of nonthermality of the generated plasma as a result of additional energy supply for heavy components in the process of complete combustion of hydrocarbons. Порівняльний аналіз параметрів плазми поперечної дуги та розряду в газовому каналі з рідкою стінкою проведений для різних робочих газів та рідин (для повітря, дистильовоної води та їх суміші з етанолом). Електронні температури заселення Te* атомів, коливальна Tv* і обертальна Tr* температури заселення молекул у плазмі, що генерується, визначені за допомогою оптичної емісійної спектроскопії. Показано, що обидва розряди генерують нерівноважну плазму у випадку робочого газу – повітря та робочої рідини – дистильованої води. Додавання палива (етанолу) в плазмову систему призводить до збільшення обертальної та коливальної температур заселення молекул, які стають рівними одна одній у межах похибки. Це може свідчити про те, що екзотермічні реакції зменшують рівень нерівноважності плазми, що генерується, внаслідок подачі додаткової енергії важкій компоненті в процесі повного згорання вуглеводнів. Сравнительный анализ параметров плазмы поперечной дуги и разряда в газовом канале с жидкой стенкой проведен для различных рабочих газов и жидкостей (для воздуха, дистиллированной воды и их смеси с этанолом). Электронные температуры заселения Te* атомов, колебательная Tv* и вращательная Tr* температуры заселения молекул в генерируемой плазме определены с помощью оптической эмиссионной спектроскопии. Показано, что оба разряда генерируют неравновесную плазму в случае рабочего газа – воздуха, и рабочей жидкости – дистиллированной воды. Добавление топлива (этанола) в плазменную систему приводит к увеличению вращательной и колебательной температур заселения молекул, которые становятся равными друг другу в пределах погрешности. Это может свидетельствовать о том, что экзотермические реакции уменьшают уровень неравновесности генерируемой плазмы в результате подачи дополнительной энергии тяжелой компоненте в процессе полного сгорания углеводородов. 2013 Article The influence of exothermic reactions on the nonequilibrium level of discharge plasma / V.Ya. Chernyak, V.V. Iukhymenko, I.V. Prysiazhnevych, Eu.V. Martysh // Вопросы атомной науки и техники. — 2013. — № 4. — С. 200-203. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 52.50. Dg, 52.80.Mg, 52.30.-q http://dspace.nbuv.gov.ua/handle/123456789/112181 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Плазменно-пучковый разряд, газовый разряд и плазмохимия Плазменно-пучковый разряд, газовый разряд и плазмохимия |
spellingShingle |
Плазменно-пучковый разряд, газовый разряд и плазмохимия Плазменно-пучковый разряд, газовый разряд и плазмохимия Chernyak, V.Ya. Iukhymenko, V.V. Prysiazhnevych, I.V. Martysh, Eu.V. The influence of exothermic reactions on the nonequilibrium level of discharge plasma Вопросы атомной науки и техники |
description |
The comparative analysis of plasma parameters of transverse arc and discharge in the gas channel with liquid wall was made for different working gas and liquids (for air, distilled water and for its mixtures with ethanol). Electronic excitation temperatures Te* of atoms, vibrational Tv* and rotational Tr* temperatures of molecules in the generated plasma were determined by optical emission spectroscopy. It was shown that both discharges generate nonequilibrium plasma in the case of working gas air and working liquid – distilled water. Adding a fuel (ethanol) into the plasma system with O2 leads to the increasing of rotational and vibrational temperatures of molecules, which became equal to each other within the errors. This may indicate that the exothermic reactions reduce the level of nonthermality of the generated plasma as a result of additional energy supply for heavy components in the process of complete combustion of hydrocarbons. |
format |
Article |
author |
Chernyak, V.Ya. Iukhymenko, V.V. Prysiazhnevych, I.V. Martysh, Eu.V. |
author_facet |
Chernyak, V.Ya. Iukhymenko, V.V. Prysiazhnevych, I.V. Martysh, Eu.V. |
author_sort |
Chernyak, V.Ya. |
title |
The influence of exothermic reactions on the nonequilibrium level of discharge plasma |
title_short |
The influence of exothermic reactions on the nonequilibrium level of discharge plasma |
title_full |
The influence of exothermic reactions on the nonequilibrium level of discharge plasma |
title_fullStr |
The influence of exothermic reactions on the nonequilibrium level of discharge plasma |
title_full_unstemmed |
The influence of exothermic reactions on the nonequilibrium level of discharge plasma |
title_sort |
influence of exothermic reactions on the nonequilibrium level of discharge plasma |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2013 |
topic_facet |
Плазменно-пучковый разряд, газовый разряд и плазмохимия |
url |
http://dspace.nbuv.gov.ua/handle/123456789/112181 |
citation_txt |
The influence of exothermic reactions on the nonequilibrium level of discharge plasma / V.Ya. Chernyak, V.V. Iukhymenko, I.V. Prysiazhnevych, Eu.V. Martysh // Вопросы атомной науки и техники. — 2013. — № 4. — С. 200-203. — Бібліогр.: 11 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT chernyakvya theinfluenceofexothermicreactionsonthenonequilibriumlevelofdischargeplasma AT iukhymenkovv theinfluenceofexothermicreactionsonthenonequilibriumlevelofdischargeplasma AT prysiazhnevychiv theinfluenceofexothermicreactionsonthenonequilibriumlevelofdischargeplasma AT martysheuv theinfluenceofexothermicreactionsonthenonequilibriumlevelofdischargeplasma AT chernyakvya influenceofexothermicreactionsonthenonequilibriumlevelofdischargeplasma AT iukhymenkovv influenceofexothermicreactionsonthenonequilibriumlevelofdischargeplasma AT prysiazhnevychiv influenceofexothermicreactionsonthenonequilibriumlevelofdischargeplasma AT martysheuv influenceofexothermicreactionsonthenonequilibriumlevelofdischargeplasma |
first_indexed |
2025-07-08T03:30:26Z |
last_indexed |
2025-07-08T03:30:26Z |
_version_ |
1837047928200364032 |
fulltext |
ISSN 1562-6016. ВАНТ. 2013. №4(86) 200
THE INFLUENCE OF EXOTHERMIC REACTIONS
ON THE NONEQUILIBRIUM LEVEL OF DISCHARGE PLASMA
V.Ya. Chernyak, V.V. Iukhymenko, I.V. Prysiazhnevych, Eu.V. Martysh
Taras Shevchenko Kiev National University, Radiophysics Faculty, Dept.
of Physical Electronics, Kiev, Ukraine
E-mail: chernyak_v@ukr.net; yvitaliy@ukr.net
The comparative analysis of plasma parameters of transverse arc and discharge in the gas channel with liquid wall
was made for different working gas and liquids (for air, distilled water and for its mixtures with ethanol). Electronic
excitation temperatures Te
* of atoms, vibrational Tv
* and rotational Tr
* temperatures of molecules in the generated
plasma were determined by optical emission spectroscopy. It was shown that both discharges generate non-
equilibrium plasma in the case of working gas air and working liquid – distilled water. Adding a fuel (ethanol) into the
plasma system with O2 leads to the increasing of rotational and vibrational temperatures of molecules, which became
equal to each other within the errors. This may indicate that the exothermic reactions reduce the level of non-
thermality of the generated plasma as a result of additional energy supply for heavy components in the process of
complete combustion of hydrocarbons.
PACS: 52.50. Dg, 52.80.Mg, 52.30.-q
INTRODUCTION
It is known that using of non-equilibrium "cold"
plasma, which is characterized by a high level of elec-
trons energy and concentration of excited and charged
particles at low gas temperature, takes a special place in
the plasma chemical technology. The combination of
these conditions allows implement the unique plasma-
chemical processes. It is possible to achieve a high se-
lectivity of the process and a product purity in that case
[1].
A large number of papers devoted to the studying of
chemical transformations of different substances in non-
equilibrium plasma of electric discharges have appeared
by now [2]. The main goal of most of these works −
research of products and mechanism of its formation in
order to develop technology of new substances creation,
materials with new interesting properties, modifications
of existing substances and materials. In most of these
studies proposed mechanisms of various processes are
based on the research of dependence of product yield or
consumption of the initial material on the external
plasma parameters - current, input power, flow rate and
composition of raw materials, and based on qualitative
observations [1, 2].
The quantitative measurements of the internal
plasma parameters (the distribution of electric fields in
the plasma, concentrations and function of the electron
energy distribution, the temperature of the heavy parti-
cles, particle distribution function by levels of internal
excitation, especially on the vibrational and electronic
levels, the concentration of radicals), which affect the
speed and the kinetics of processes in plasma, usually
are not held. Nevertheless if such measurements are
carried out, the measured parameters are not enough for
a detailed analysis of the probable mechanisms of proc-
esses. Therefore proposed mechanisms are mostly hypo-
thetical and its reliability is low [1]. At the same time,
physicochemical processes in quasi-equilibrium and
non-equilibrium plasmas are typically multichannel (in
the sense that it occurs through a large number of elec-
tronic-vibrational or vibrational levels and with the for-
mation of excited intermediate states and excited prod-
ucts in different quantum states). Multichannel physico-
chemical processes (in the case of deviations from the
thermodynamic equilibrium) lead to the fact that direct
and inverse processes often occur through a different
quantum state. In this case the influence of chemical
processes on the plasma parameters almost does not
take into account that can radically change the expected
result.
It should be taken into account that the influence of
endothermic and exothermic chemical processes on
plasma non-isothermality is fundamentally different.
The high rates of plasma-chemical reactions are of-
ten due to a high concentration of excited atoms and
molecules in electric discharges. Vibrational and elec-
tronic excitations play the most important role in the
stimulation of endothermic processes in plasma mainly
due to the reduction of the Arrhenius activation energy
Ea. and at the same this reduction Ea is practically absent
for exothermic processes [3].
However, L.S. Polak [4] drew attention to an inter-
esting relation of changes of reaction rate constants k at
changes of population distribution temperature of the
vibrational states − Tv and translational temperature −
Ttr by example of experimentally studied reactions [5]:
O++N*2(v) → NO++N.
The reaction rate constant k increases up to 40 times
at change Tv from 1000 to 6000 K (when Ttr = 300 K),
and the same change of the translational temperature
(not taking into account the Tv changing) leads to a sig-
nificantly larger changing of k up to 112 times accord-
ing to Arrhenius expression [6]:
k = ATbe
− Ea
RT .
Also analysis of information about chemical lasers
[7] shows that it can be expected that about half of re-
leased energy goes into increasing exactly translational
temperature at the exothermic chemical reactions.
Studies of plasma assisted combustion showed that
the non-equilibrium plasma can stimulate the low-
temperature oxidation of the fuel, even without ignition
of the combustible mixture [2].
With taking into account the extremely high level of
energy release during the exothermic chemical reactions
(≥ 1 eV/mol) all saying above indicates that influence of
ISSN 1562-6016. ВАНТ. 2013. №4(86) 201
chemical reactions on the level of non-isothermality of
plasma itself can be extremely high. And in the devel-
opment of plasma-chemical technologies with using
exactly non-equilibrium plasma it should to be taken
into account.
In this paper were studied the influence of the pres-
ence of a small addition of lean burn in plasma gas on
non-isothermality of transversal arc plasma (TA) and
plasma of discharge in the gas channel with liquid wall
(DGCLW). The mixture of ethanol with oxygen of air
was used as fuel.
1. EXPERIMENT
Experimental schema of the electro arc discharge in
the transverse blowing gas flow (transverse arc – TA)
and discharge in the gas channel with liquid wall
(DGCLW) were considered in details in [8, 9] corre-
spondingly.
Two copper horizontal electrodes were placed oppo-
site each other and gas flow was directed perpendicular
to the electrode axis. TA discharge was powered by the
DC source. All measurements were carried out for the
discharge currents Id=0.1…1 A and gas flow
G=110 cm3/s. Different working gases (air and mixture
air/ethanol) were used.
For realization the second discharge two copper
electrodes were placed inside glass tubes, along which
gas flows. Two contrary gas flows immersed into the
liquid collide and form the gas channel where discharge
burns. Since gas flows through the bubble-liquid inter-
face (outside the gas channel) and evaporation from the
liquid is directed inside the bubble (gas channel), thus
the intensive transversal heat and mass exchange occurs
in this discharge. Discharge current Id for each regime
was varied from 60 to 400 mA. Airflow rate
G=55 cm3/s was maintained constant.
Working gas (air) and different liquids (distilled
water, its mixture with ethanol and pure ethanol) were
used for DGCLW. Different regimes of the discharge
were studied: (i) both Cu electrodes; (ii) one “liquid”
electrode with positive polarity – “liquid” anode (LA);
(iii) with negative polarity of one “liquid” electrode –
“liquid” cathode (LC).
2. METHODS AND RESULTS
Emission spectra of TA plasma were measured by
CCD based spectrometer SL 40-3648 Solar TII in the
range of 200…1100 nm with spectral resolution
~ 0.7 nm.
Population distribution temperature of the electronic
states of atoms (electronic temperature Te
*) in plasma
were determined by the relative intensity of the cooper
(material of electrodes), oxygen (777.2, 844.6,
926.6 nm), hydrogen (656.1, 486.2 nm) spectral lines by
Boltzmann plots. Vibrational Tv
* and rotational Tr
* tem-
peratures of molecules were evaluated by relative inten-
sities of the emission bands of N2(C-B), OH (A-X) (in
the case of air for TA and distilled water for DGCLW),
CN(B-X), C2(A-X) (in the case of using mixture
air/ethanol, water/ethanol) by using SPECAIR [10]
simulation.
Population temperatures distribution along the gas
flow in the TA plasma for different working gas is
shown on Fig. 1.
a
b
Fig. 1. Distribution of the population distribution
temperatures of atoms and molecules in TA plasma
along the gas flow z for different working gas: a − air
(discharge current I=480 mA); b − mixture
air/ethanol=30/1 (I=400 mA). Flow rate G=110 cm3/s,
z = 0 the middle of electrodes for both cases
From Fig. 1,a can be seen that TA in air generates
non-thermal plasma
(Tr
*(N2) < Tv
*(N2) = Te
*(O)<Te
*(Cu)).
The difference between the temperatures
Tе
*(Cu)>Tе
*(O) was explained by different mechanism
of population of the excited electronic states of these
atoms. Since main positive ions in electroarc discharges
with copper electrodes are copper atomic ions and the
characteristic time of the ion-ion recombination is com-
parable with the time of optical transitions in Cu I the
additional mechanism of the population of the excited
electronic states of cooper atoms occurs due to the ion-
ion recombination, which is almost absent for the blow-
ing gas atoms [11].
Increasing of the arc length was observed in the case
of adding fuel into the plasma forming gas at fixed
discharge current and gas flow. In the case of working
with mixture air/ethanol the degree of non-equilibrium
of the generated plasma significantly reduces (absolute
values of vibrational and rotational temperatures of
molecules increase and became equal to each other (see
Fig. 1,b). The values electronic population temperatures
of copper and oxygen atoms, as well as its distributions
along the gas flow, remain the same within the error
(see Fig. 1).
Dependences of population distribution temperatures
of atoms, molecules and radicals on the discharge cur-
rent for the DGCLW are represented on Fig. 2.
a
b
ISSN 1562-6016. ВАНТ. 2013. №4(86) 202
As can be seen from Fig. 2,a DGCLW generates
non-thermal plasma (with noticeable difference between
vibrational and rotational temperatures of N2 molecule).
a
b
Fig. 2. Dependences of population distribution tempera-
tures of atoms and molecules in the plasma of DGCLW
on the discharge current. Discharge mode - "LA",
air flow G=55 cm3/s: a) - distilled water;
b) - solution of water/ethanol (1/5)
At the same time Tv
*(N2)≈Tv
*(OH)≈Tr
*(OH) within
the marked error and Tv
*(N2)<Te
*(H) at low currents
(І≤100 mА). With discharge current increasing the level
of non-equilibrium decreases, but the difference be-
tween all determined temperatures and rotational tem-
perature of nitrogen remains noticeable (see Fig. 2,a).
Intensive bands of CN and C2 molecules were ob-
served in emission spectra of plasma in the case of add-
ing the fuel mixture into the working liquid or working
gas. At that time diagnostics by the N2 bands of the 2+
system was impossible because of its overlapping with
CN bands (B-X transition). In this case vibrational and
rotational temperatures were determined by the emis-
sion bands of CN and C2 molecules.
As can be seen from Fig. 2,b, adding the fuel into
the plasma system leads to the increasing of rotational
and vibrational temperatures of molecules, which be-
came equal to each other within the errors for each
molecule (CN or C2). This may indicate that the exo-
thermic reactions reduce the level of non-thermality of
the generated plasma as a result of additional energy
supply for heavy components in the process of complete
combustion of hydrocarbons. Beside that, the decreasing
of non-thermality level of plasma was observed with
discharge current increasing. It was founded that
Te
*(Н)<Tr
*(C2)≤Tv
*(C2)<Tr
*(CN)=Tv
*(CN) (see Fig. 2,b).
Lower temperatures Te
*(Н) in comparison with rota-
tional and vibrational temperatures of CN and C2 mole-
cules can be explained by the fact that exothermic reac-
tions lead to the energy release, which is basically spent
for changing the thermal energy of heavy particles and
for the excitation energy of rotational and vibrational
levels of molecules without changing the thermal en-
ergy of electrons.
CONCLUSIONS
• TA and DGCLW generate non-equilibrium
plasma in the case of working gas air and working liq-
uid – distilled water.
• Adding the fuel into the plasma system leads to
the increasing of vibrational and rotational temperatures
of molecules, which became equal to each other within
the errors. This may indicate that the exothermic reac-
tions reduce the level of non-thermality of the generated
plasma as a result of additional energy supply for heavy
components in the process of complete combustion of
hydrocarbons.
• It was founded that electronic temperature of hy-
drogen is lower than vibrational and rotational tempera-
tures of cyan and carbon molecules. It was supposed
that energy release as result of exothermic reactions is
basically spent for changing the thermal energy of
heavy particles and for the excitation energy of rota-
tional and vibrational levels of molecules without
changing the thermal energy of electrons и excitation
energy of electronical levels of molecules.
ACNOWLEDGEMENTS
This work was partially supported by the Taras
Shevchenko National University of Kyiv.
REFERENCES
1. D.I. Slovetskii. Mechanisms of chemical reactions in
non-equilibrium plasma. Moscow: “Nauka”. 1980,
310 p.
2. A. Fridman. Plasma chemistry. Cambridge Univer-
sity Press. 2008, 978 p.
3. A.A. Levitsky, S.O. Macheret, A. Fridman. “Kinetic
Modeling of Plasma-Chemical Processes Stimulated by
Vibrational Excitation” in Chemical Reactions in Non-
Equilibrium Plasma. Moscow: “Nauka”. 1983, p. 3.
4. L.S. Polak. Plasma-chemical kinetics. Essays on the
physics and chemistry of low-temperature plasma.
M.: “Nauka”. 1971, p. 302-385.
5. A.L. Schmeltekopf, E.E. Ferguson, F.C. Fehsenfeld.
Aterglow Studies of the Reactions He+, He(23S),
and 0+ with Vibrationally Excited N2 // J. CHEM.
PHYS. 1968, v. 48, № 7, p. 2966-2973.
6. P.M. Hierl, I. Dotan, J.V. Seeley, J.M. Van Doren,
R.A. Morris, A.A. Viggiano. Rate Constants for re-
action of O+ with N2 and O2 as a function of tem-
perature (300…1800 K) // J. Chem. Phys. 1997,
v. 106, p. 3540-3544.
7. A.N. Oraevsky. Chemical lasers. Handbook on la-
sers. Moscow: “Sovetskoe radio”. 1978, p. 158-183.
8. I.V. Prysiazhnevych, V.Ya. Chernyak, V.V. Yuk-
hymenko, et al. Study of non-isothermality of at-
mospheric plasma in transverse arc discharge //
Ukrainian Journal of Physics. 2007, v. 52, № 11,
p. 1061-1067.
b
a
ISSN 1562-6016. ВАНТ. 2013. №4(86) 203
9. I. Prysyazhnevich, V. Chernyak, J.D. Skalný, et al.
Sources of nonequilibrium plasma at atmospheric
pressure // Ukrainian Journal of Physics. 2008,
v. 53, № 5, p. 472-476.
10. www.specair-radiation.net
11. I.V. Prysiazhnevych, Eu.V. Martysh, T.E. Lisitchenko.
Electric discharge in the transverse air flow at at-
mospheric pressure // Problems of Atomic Science
and Technology. Series “Plasma Physics” (18).
2012, № 6, p. 93-95.
Article received 15.05.2013.
ВЛИЯНИЕ ЭКЗОТЕРМИЧЕСКИХ РЕАКЦИЙ НА УРОВЕНЬ НЕРАВНОВЕСНОСТИ РАЗРЯДНОЙ
ПЛАЗМЫ
В.Я. Черняк, В.В. Юхименко, И.В. Присяжневич, Е.В. Мартыш
Сравнительный анализ параметров плазмы поперечной дуги и разряда в газовом канале с жидкой стенкой
проведен для различных рабочих газов и жидкостей (для воздуха, дистиллированной воды и их смеси с эта-
нолом). Электронные температуры заселения Te
* атомов, колебательная Tv
* и вращательная Tr
* температуры
заселения молекул в генерируемой плазме определены с помощью оптической эмиссионной спектроскопии.
Показано, что оба разряда генерируют неравновесную плазму в случае рабочего газа – воздуха, и рабочей
жидкости – дистиллированной воды. Добавление топлива (этанола) в плазменную систему приводит к уве-
личению вращательной и колебательной температур заселения молекул, которые становятся равными друг
другу в пределах погрешности. Это может свидетельствовать о том, что экзотермические реакции уменьша-
ют уровень неравновесности генерируемой плазмы в результате подачи дополнительной энергии тяжелой
компоненте в процессе полного сгорания углеводородов.
ВПЛИВ ЕКЗОТЕРМІЧНИХ РЕАКЦІЙ НА РІВЕНЬ НЕРІВНОВАЖНОСТІ РОЗРЯДНОЇ ПЛАЗМИ
В.Я. Черняк, В.В. Юхименко, І.В. Присяжневич, Є.В. Мартиш
Порівняльний аналіз параметрів плазми поперечної дуги та розряду в газовому каналі з рідкою стінкою
проведений для різних робочих газів та рідин (для повітря, дистильовоної води та їх суміші з етанолом).
Електронні температури заселення Te
* атомів, коливальна Tv
* і обертальна Tr
* температури заселення молекул
у плазмі, що генерується, визначені за допомогою оптичної емісійної спектроскопії. Показано, що обидва
розряди генерують нерівноважну плазму у випадку робочого газу – повітря та робочої рідини – дистильова-
ної води. Додавання палива (етанолу) в плазмову систему призводить до збільшення обертальної та колива-
льної температур заселення молекул, які стають рівними одна одній у межах похибки. Це може свідчити про
те, що екзотермічні реакції зменшують рівень нерівноважності плазми, що генерується, внаслідок подачі
додаткової енергії важкій компоненті в процесі повного згорання вуглеводнів.
|