Some questions of SNF reprocessing at the stages of ionization and magnetoplasma separation in crossed fields
Possible composition of spent nuclear fuel (SNF) before and after the thermal separation stage is shown. The possibility of SNF purification from fission products (FP) at the ionization stage is analyzed. Trajectories of charged particles - molecular ions, FP and nuclear fuel, remained in SNF, at ma...
Gespeichert in:
Datum: | 2015 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2015
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/112200 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Some questions of SNF reprocessing at the stages of ionization and magnetoplasma separation in crossed fields / V.B. Yuferov, V.V. Katrechko, T.I. Tkachova, S.V. Shariy, A.S. Svichkar, E.V. Mufel, V.О. Ilichova, M.O. Shvets // Вопросы атомной науки и техники. — 2015. — № 4. — С. 345-349. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-112200 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1122002017-01-19T03:02:13Z Some questions of SNF reprocessing at the stages of ionization and magnetoplasma separation in crossed fields Yuferov, V.B. Katrechko, V.V. Tkachova, T.I. Shariy, S.V. Svichkar, A.S. Mufel, E.V. Ilichova, V.О. Shvets, M.O. Приложения и технологии Possible composition of spent nuclear fuel (SNF) before and after the thermal separation stage is shown. The possibility of SNF purification from fission products (FP) at the ionization stage is analyzed. Trajectories of charged particles - molecular ions, FP and nuclear fuel, remained in SNF, at magnetoplasma separation stage are calculated. Приведений можливий склад відпрацьованого ядерного палива (ВЯП) до і після термічної стадії поділу. Проаналізовано можливість очищення ВЯП від продуктів розділення на стадії іонізації. Розраховані траєкторії руху заряджених частинок – молекулярних іонів, продуктів поділу і ядерного палива, що залишаються в ВЯП, для стадії магнітоплазмового розділення. Приведен возможный состав отработанного ядерного топлива (ОЯТ) до и после термической стадии разделения. Проанализирована возможность очистки ОЯТ от продуктов деления на стадии ионизации. Рассчитаны траектории движения заряженных частиц – молекулярных ионов, продуктов деления и ядерного топлива, остающихся в ОЯТ, для стадии магнитоплазменного разделения. 2015 Article Some questions of SNF reprocessing at the stages of ionization and magnetoplasma separation in crossed fields / V.B. Yuferov, V.V. Katrechko, T.I. Tkachova, S.V. Shariy, A.S. Svichkar, E.V. Mufel, V.О. Ilichova, M.O. Shvets // Вопросы атомной науки и техники. — 2015. — № 4. — С. 345-349. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 28.41.Kw http://dspace.nbuv.gov.ua/handle/123456789/112200 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Приложения и технологии Приложения и технологии |
spellingShingle |
Приложения и технологии Приложения и технологии Yuferov, V.B. Katrechko, V.V. Tkachova, T.I. Shariy, S.V. Svichkar, A.S. Mufel, E.V. Ilichova, V.О. Shvets, M.O. Some questions of SNF reprocessing at the stages of ionization and magnetoplasma separation in crossed fields Вопросы атомной науки и техники |
description |
Possible composition of spent nuclear fuel (SNF) before and after the thermal separation stage is shown. The possibility of SNF purification from fission products (FP) at the ionization stage is analyzed. Trajectories of charged particles - molecular ions, FP and nuclear fuel, remained in SNF, at magnetoplasma separation stage are calculated. |
format |
Article |
author |
Yuferov, V.B. Katrechko, V.V. Tkachova, T.I. Shariy, S.V. Svichkar, A.S. Mufel, E.V. Ilichova, V.О. Shvets, M.O. |
author_facet |
Yuferov, V.B. Katrechko, V.V. Tkachova, T.I. Shariy, S.V. Svichkar, A.S. Mufel, E.V. Ilichova, V.О. Shvets, M.O. |
author_sort |
Yuferov, V.B. |
title |
Some questions of SNF reprocessing at the stages of ionization and magnetoplasma separation in crossed fields |
title_short |
Some questions of SNF reprocessing at the stages of ionization and magnetoplasma separation in crossed fields |
title_full |
Some questions of SNF reprocessing at the stages of ionization and magnetoplasma separation in crossed fields |
title_fullStr |
Some questions of SNF reprocessing at the stages of ionization and magnetoplasma separation in crossed fields |
title_full_unstemmed |
Some questions of SNF reprocessing at the stages of ionization and magnetoplasma separation in crossed fields |
title_sort |
some questions of snf reprocessing at the stages of ionization and magnetoplasma separation in crossed fields |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2015 |
topic_facet |
Приложения и технологии |
url |
http://dspace.nbuv.gov.ua/handle/123456789/112200 |
citation_txt |
Some questions of SNF reprocessing at the stages of ionization and magnetoplasma separation in crossed fields / V.B. Yuferov, V.V. Katrechko, T.I. Tkachova, S.V. Shariy, A.S. Svichkar, E.V. Mufel, V.О. Ilichova, M.O. Shvets // Вопросы атомной науки и техники. — 2015. — № 4. — С. 345-349. — Бібліогр.: 10 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT yuferovvb somequestionsofsnfreprocessingatthestagesofionizationandmagnetoplasmaseparationincrossedfields AT katrechkovv somequestionsofsnfreprocessingatthestagesofionizationandmagnetoplasmaseparationincrossedfields AT tkachovati somequestionsofsnfreprocessingatthestagesofionizationandmagnetoplasmaseparationincrossedfields AT shariysv somequestionsofsnfreprocessingatthestagesofionizationandmagnetoplasmaseparationincrossedfields AT svichkaras somequestionsofsnfreprocessingatthestagesofionizationandmagnetoplasmaseparationincrossedfields AT mufelev somequestionsofsnfreprocessingatthestagesofionizationandmagnetoplasmaseparationincrossedfields AT ilichovavo somequestionsofsnfreprocessingatthestagesofionizationandmagnetoplasmaseparationincrossedfields AT shvetsmo somequestionsofsnfreprocessingatthestagesofionizationandmagnetoplasmaseparationincrossedfields |
first_indexed |
2025-07-08T03:31:53Z |
last_indexed |
2025-07-08T03:31:53Z |
_version_ |
1837048019937132544 |
fulltext |
ISSN 1562-6016. ВАНТ. 2015. №4(98) 345
SOME QUESTIONS OF SNF REPROCESSING AT THE STAGES
OF IONIZATION AND MAGNETOPLASMA SEPARATION
IN CROSSED FIELDS
V.B. Yuferov, V.V. Katrechko, T.I. Tkachova, S.V. Shariy, A.S. Svichkar, E.V. Mufel,
V.О. Ilichova, M.O. Shvets
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
Е-mail: v.yuferov@kipt.kharkov.ua
Possible composition of spent nuclear fuel (SNF) before and after the thermal separation stage is shown. The
possibility of SNF purification from fission products (FP) at the ionization stage is analyzed. Trajectories of charged
particles - molecular ions, FP and nuclear fuel, remained in SNF, at magnetoplasma separation stage are calculated.
PACS: 2 8 . 4 1 . K w
INTRODUCTION
The problem of SNF reprocessing and creation of a
closed nuclear fuel cycle becomes more urgent. Exist-
ing radiochemical technologies of SNF reprocessing
can`t fully satisfy the economic, energy and environ-
mental needs of humanity. Physical methods of repro-
cessing do not lead to the formation of liquid radioac-
tive waste, and preliminary estimates are more energy
efficient than the existing ones, so they are now again
attracted the attention. In KIPT [1 - 3] the purification
of SNF from FP in successive stages: thermal heating,
ionization and magnetoplasma separation (MPS) of
mass groups in plasma rotated in EхВ fields [4, 5], is
proposed and investigated. The purpose of present paper
is to consider some of the issues of SNF separation at
the ionization and magnetoplasma separation stages.
1. THE COMPOSITION OF SNF BEFORE
AND AFTER UPLOADING FROM
REACTOR
As stated in [6] process of plasma SNF purification
from FP involves three stages:
• removing easily volatile elements and compounds
by thermal desorption and evaporation;
• removal of elements and compounds with low ion-
ization potentials and high ionization cross sections in
partially ionized plasma;
• separation of heavy and light ions in highly ion-
ized plasma (its composition substantially differs from
the original composition of SNF and is received after
the first two separation stages), by rotating in crossed
electric and magnetic fields.
Fig. 1. NF and FP of SNF as a function of atomic mass. [7]
Thermal phase allows to reduce energy consumption
for separation and product cost that will become more
apparent after consideration of ionization stage. Fig. 1
shows the structure of SNF immediately after its extrac-
tion from reactor – curve 1, and after prolonged storage
– curve 2. It can be seen that due to the decay processes
SNF composition is changed, also resulting in variation
of final composition during reprocessing.
In order to avoid the difficulties associated with dif-
fusion processes at heating and impurities derivation
from multicomponent alloy, that is SNF, it is recom-
mended to grind the material of fuel rods, according to
given estimates to several microns [8]. Such process as
zone melting may become another solution of imple-
mentation of thermal heating stage. It allows to avoid an
additional step in the technological cycle – material
grinding.
2. THE FEATURES OF PLASMA SNF
CREATION
In [6] dependences of ionization potentials and bind-
ing energies of oxides – dissociation energies of FP and
uranium, are given and it is pointed out that these values
are, so to speak, antiphase. Some FP have dissociation
energy values greater than ionization ones, and vice
versa, Fig. 2. A similar picture is with FP dimers that
may be formed due to high binding energies of some
FP. The ionization potentials of pure elements are close
to the ionization potentials of dimers of these elements
(see curve 3 on Fig. 2), that could be associated with the
same energies of the outer electron shells.
Fig. 2. Dependences of oxides binding energies (curve
1) and the ionization energies (2 – elements, 3 – dimers)
on the atomic number of chemical element (for FP))
ISSN 1562-6016. ВАНТ. 2015. №4(98) 346
For uranium, the ratio of these values is small, but
dissociation energy is greater than ionization potentials
of oxides that is represented by the horizontal lines in
Fig. 2. Thus, only a small proportion of elements have
binding energies greater than uranium oxides have. At
the same time, ionization potentials of these oxides are
close to ionization potentials of uranium and its oxides.
This may give interesting features to SNF multicompo-
nent plasma. During its heating and ionization of some
elements dissociation of oxides will take place, and if it
will be in collisionless plasma, the dissociation prod-
ucts, mainly in the neutral state, will reach plant walls.
They will remain on them or return to gas plasma vol-
ume depending on the element properties and wall tem-
perature. This effect of molecules dissociation into at-
oms, and subsequent transformation of atom into mole-
cule on the wall, and its return to the plasma (a kind of
recycling) is observed for nitrogen plasma on the DIS-1,
where ions N2+ imitated heavy ions (fuel), atoms and
atomic ions N+ – fission products (simulation experi-
ments, SM – simulation media). But, as follows from
[8], the vapor pressures of elements with binding ener-
gies smaller than uranium oxides have – significantly
more than the vapor pressure of uranium oxides, so dur-
ing heating, these elements can be evaporated from SNF
(under certain conditions). Thus, there is purification of
SNF from the significant amounts of impurities (about
75%) – by termoheating. As a result only zirconium and
lanthanides oxides may remain in SNF, see Table,
which presents substance in SNF after termoheating
stage.
The percentage of FP in SNF purified after
termoheating stage
a . m . u . U – 2 3 5 , % P u – 2 3 9 %
90 2.865 1.0065
94 3.2015 2.16
95 3.25 2.4745
96 3.151 2.47
99 3.066 3.0925
140 3.1575 2.665
141 2.93 2.488
144 2.7375 1.878
Fig. 3. Ionization potentials and binding energies of FP
elements and their molecules
The ionization potentials of zirconium oxides and
lanthanides oxides are not found, but it can be assumed
that these values will not be less than the value of the
ionization potential of UO2
+ that is equal to 5.1 eV (see
Fig. 3). Then dissociation of zirconium and lanthanides
oxides will not be preceded to UO2 ionization and all
the energy for creating plasma from this mixture will go
to ionization of molecules, its components, unlike creat-
ing of collisionless nitrogen plasma where only ions N2
+
are formed and ions N+ are absent, because two atoms
N1 formed during dissociation are not contained by the
magnetic field, and go on the wall recombining into N2.
The ionization potentials of N2 +, N + are 15.5 and
14.5 eV, respectively, and dissociation-binding energy
N2. = 9.76 eV. That means that dissociation is much
more intensive than the ionization, but ionization of
nitrogen atom does not occur because of its short life
time in plasma, before reaching the wall τ ~ 100 mcs.
More correctly, the concentration of atomic nitrogen
ions is negligible (lower by 2-3 orders of magnitude) in
comparison with ion concentration N2+ that is 1011 cm-3.
Proceeding from SNF composition after termoheat-
ing stage, the plasma creation can be determined by the
following equations:
dNт
+/dt =NeN0
тσi
тve-Nт
+N∑
0σп
т∑vi + +Nт
0N∑
+σп
∑тvi –
Nт
+/τт;
dN∑
+/dt =NeN∑
0σI
∑ve-N∑
+Nт
0σп
∑тvi + +N∑
0Nт
+σп
∑т
vi -
N∑
+/τ∑;
dNe/dt = NeNт
0 σi
тve+ N∑
0 Ne σi
∑
ve-
-NeNт
+σi
т
ve -Ne/τе;
W = w 1 + w 2 ,
where: T and Σ indices belong to the components of fuel
and remaining FP; N0
т,Nт
+ are the density of neutrals
and fuel ions; N∑
0, N∑
+ are the density of neutrals and
FP ions (oxides of zirconium and lanthanides); Ne =
N(т+Σ)+ is the density of electrons; σI is an ionization
cross section of the i-th component; σп
12, σп
21 are charge
exchange cross sections ∑+ – Т0 and ∑0 - Т+; ve, vi are
the velocity of electrons and ions – neutrals; τ is plasma
lifetime, according to [9] taken as τ ≈0.4τii lnR; τ1, τ2 are
lifetime of ions Т and ∑, respectively, and τ1/ τ2
~(М∑/Мт)0.5; W is the total power which is released by
formation of charged particles (w1 – radiation and w2 –
heat).
It should be noted that recombination parts in all
equations are small compared with the ionization and
charge-exchange.
As indicated above, this ionization takes place after
the heating and evaporation stages. The equations are
given in a simplified manner for the explanation of the
processes.
In connection with large exchange cross sections the
importance of these processes in the equations of plas-
ma creation are significant, as shown in [9]. Although
there is no ionization contribution to sodium, its density
is quite high due to the charge exchange process К+
+Na0 =К0 +Na+. In this case it will be: N ∑
0 + N т
+
= N ∑
+ + N 0
т .
As can be seen from Fig. 4, vapor of SNF, fuel and
the remained oxides, enter in magnetic field and are
ionized. Ionized part goes along the magnetic field in
separation region, not ionized – condenses on the oppo-
site wall. In the case of priority of fuel ionization cross
sections, fuel will be ionized and captured completely.
ISSN 1562-6016. ВАНТ. 2015. №4(98) 347
Fig. 4. Scheme of ionization process in plasma source
and guiding magnetic field, comprising: 1 – chamber;
2 – evaporator; 3 – vapor jet; 4 – not ionized conden-
sate; 5 – pumps to pump out oxygen
Then the part of the FP will be ionized, and the other
part in the form of neutrals will be deposited on the wall
4 (separation by ionization). Due to the constant stream
of molecules plasma is nonequilibrium and function of
the electron energy distribution is not symmetrical, its
high-temperature wing depending on the neutral flow
and input energy rate can increase the slope.
3. THE CALCULATION OF THE MOTION
OF PLASMA IONS, METAL IXIDES,
IN CROSSED FIELDS
After all material in SNF is transferred into plasma
phase, the third stage is possible – magnetoplasma sepa-
ration by masses in crossed and gradient E and H fields
It has been previously suggested separation to heavy
and light components, that while the condition for the
threshold weight Mc takes place [3]:
Мс =erB2 / 4E
located on the side surface or along magnetic field.
From this perspective, it is advisable to consider the
motion of charged particles in collisionless molecular
SNF plasma.
MATHEMATICAL FORMULATION OF PROBLEM.
The vector equation of motion of a charged particle
with charge q and mass m in electromagnetic field with
electric field intensity E
and magnetic field induction
B
is given by [10]:
,ma qE q V B = +
. (1)
In a cylindrical coordinate system the motion of
charged particle in electric and magnetic fields is de-
scribed by the following equations:
( ) ( )
( ) ( )
( )
2 ;
2 ;
.
r z
r z
z r
m r r q E r B zB
m r r q E zB rB
mz q E rB r B
ϕ
ϕ
ϕ
ϕ ϕ
ϕ ϕ
ϕ
− = + −
+ = + −
= + −
(2)
The system of equations is solved with the initial
conditions: r(0)=r0, φ(0)=0, z(0)=z0; ( ) 00 rr V= ,
( )0 0ϕ = , ( ) 00 zz V= , where r0, φ0 and z0 – initial co-
ordinates of charged particle, Vr0 and Vz0 – components
of initial velocity. Components Vr0 and Vz0 are given as:
0 0 sinrV V α= , 0 0 coszV V α= , where V0 – initial veloci-
ty, α – the angle at which the particle starts its motion in
the system.
The magnetic field has two nonzero components, Br
and Bz, which are related as divB=0. Given this compo-
nents of magnetic field are as follows:
0
0 0
0
0, 0,
3
sin , 0 4 ,
50 4
0, 4 ;
0;
0, 0,
12 13sin , 0 4 ,
25 4 2 25
, 4 .
25
r
z
z
rB zB z L
L L
z L
B
z
zB B B z L
L
B
z L
ϕ
π π
π π
<
= ≤ <
≥
=
<
= + + ≤ <
≥
(3)
The axial magnetic field has the form shown in
Fig. 5. Based on the estimated size of the SNF magne-
toplasma separation plant, the following values are tak-
en into accont in calculations: L = 0.25 m; the maximum
value of the magnetic field induction B0 = 2.5 Т, the
region of uniform magnetic field with induction B0/25
(0.1 Т) begins at z = 1 m.
Fig. 5. The distribution of the magnetic field induction
along the axis z
The electric field intensity has only one nonzero
component and is the same throughout the length of the
system (Er = E0, Eφ = 0, Ez = 0).
4. CALCULATIONS RESULTS
Figs. 6-9 shows the results of calculation of charged
particles trajectories, obtained by solving the system of
equations (2) for different initial conditions: changing of
the initial energy W0 ( 2
0 0 / 2W mV qU= = ), initial angle
α and the initial coordinate r0. The intensity of radial
electric field is 400 V/m, the initial coordinate z0=0 m.
Initial energies of particles – 5.8 (SrO), 5.8 (CeO) и
5.2 eV (UO2), respectively.
Impact of mass on charged particles trajectories can
be clearly seen from Fig. 6, where the solid line corre-
sponds to a particle with mass of 106 a.m.u. (SrO),
dashed – 160 a.m.u. (CeO), point line – 270 a.m.u.
(UO2). The horizontal line at the level of R = 0.7 m cor-
responds to estimated radius of SNF separation plant.
ISSN 1562-6016. ВАНТ. 2015. №4(98) 348
Fig. 6. Charged particles motion trajectories for
different masses at W0=5 eV, α=45°, r0=0.01 m
Charged particles motion trajectories at different
values of initial energy (5, 10, 15 and 20 eV) are shown
in Fig. 7.
Fig. 7. Charged particles motion trajectories for differ-
ent masses and initial energies at α=45°, r0=0.01 m
Fig. 8 shows particles motion trajectories of all three
groups with different values of the initial angle: -80°,
-40°, 0, 40° and 80°.
Fig. 8. Charged particles motion trajectories for differ-
ent masses and initial angles at W0=10 eV, r0=0.01 m
Fig. 9 shows particles motion trajectories for three
groups at different values of the initial position r0: 1, 3
and 5 cm. It is assumed that the radial dimension of the
plasma source does not exceed a value of 5 cm, i.e. the
maximum diameter of the plasma source should be
10 cm that is generally acceptable for the dimensions of
the particles separation plant.
Fig. 9. Charged particles motion trajectories for differ-
ent masses and initial radial coordinate at W0=10 eV,
α=45°
As can be seen, uranium dioxide (atomic weight
270) at any initial conditions reaches the chamber walls,
where the appropriate collector will be located (collec-
tor for actinides). Charged particles with mass 106 as
mass 160 move in the chamber towards the end of the
chamber, without reaching its walls. Thus it is possible
to separate the group of actinides (NF) from FP re-
mained in SNF after preliminary purification at thermal
heating stage.
CONCLUSIONS
At the stage of thermal heating is possible to with-
draw a large elements FP amount of SNF.
For a substantial reduce the energy consumption in
the ionization necessarily have to be derived elements
that exceed the value of the ionization potentials of the
dissociation energies of molecules. The remaining ox-
ides of zirconium, lanthanides and actinides will make
molecular plasma. Further separation can occur in a
rotating plasma with the implementation of the condi-
tions of the threshold mass substance. Elements having
a mass greater than the threshold will go out radially
along helical paths on the limiting surface, less – go
along the magnetic field. To simulate the separation NF
from FP at stages of ionization and magnetoplasma sep-
aration in crossed fields SNF composition may include
oxides of non-radioactive isotope uranium-238, zirconi-
um and lanthanides.
REFERENCES
1. A.N. Dovbnya, A.M. Egorov, О.М. Shvets,
V.B. Yuferov, S.V. Nevstruyev. Conceptual project
of the plasma resonant separator // Problems of
Atomic Science and Ttechnology. Series “Plasma
Electronics and New Methods of Acceleration”.
2003, v. 4, p. 323-325.
2. A.N. Dovbnya, O.S. Druy, A.M. Egorov, et al.
Comparative analysis of projects of plasma separa-
tors of isotopes with oscillations on cyclotron fre-
quencies // Problems of Atomic Science and Tech-
nology. Series “Plasma Electronics and New Meth-
ods of Acceleration”. 2004, v. 4, p. 51-57.
3. V.B. Yuferov, A.S. Svichkar, S.V. Shariy,
V.V. Katrechko, T.I. Tkachova. Dynamics ion flows
in a rotating plasma // East European Journal of
Physics. 2014, v. 1, №2, p. 96-99.
4. US Patent №6096220. Plasma Mass Filter / Tihiro
Ohkawa // Published 01.08.2000.
5. V.A. Zhil’tsov, V.M. Kulygin, N.N. Semashko, et al.
Plasma separation of the elements applied to nuclear
materials handling // Atomic Energy. 2006, v. 101,
№ 4, p. 755-759.
6. V.B. Yuferov, S.V. Shariy, V.V. Katrechko, et al.
Features of molecular plasma SNF after heating and
ionization // Problems of Atomic Science and Tech-
nology. 2014, № 5, p. 63-68.
7. https://www-nds.iaea.org/sgnucdat/
8. V.B. Yuferov, V.V. Katrechko, S.V. Shariy,
A.S. Svichkar, T.I. Tkachova, E.V. Mufel,
V.О. Ilichova, S.N. Khizhnyak. Physical principles
of the multicomponent media’ separation at ther-
moheating / / Problems of Atomic Science and
Technology. 2015, № 2, p. 43-47.
https://www-nds.iaea.org/sgnucdat/
ISSN 1562-6016. ВАНТ. 2015. №4(98) 349
9. E.A. Lisenko, E.I. Skibenko, V.B. Yuferov. Effect of
vacuum conditions for admission of light impurities
in the plasma at the initial stage of the discharge:
Review. Мoscow: “CRIatominform”, 1987, 18 p.
10. D.V. Sivuhin. General course of physics. Electricity.
Moskow: “Fizmatlit”, 2004, 656 p.
Article received 280.05.2015
НЕКОТОРЫЕ ВОПРОСЫ ПЕРЕРАБОТКИ ОЯТ НА СТАДИЯХ ИОНИЗАЦИИ
И МАГНИТОПЛАЗМЕННОГО РАЗДЕЛЕНИЯ В СКРЕЩЕННЫХ ПОЛЯХ
В.Б. Юферов, В.В. Катречко, Т.И. Ткачёва, С.В. Шарый, А.С. Свичкарь, Е.В. Муфель, В.О. Ильичева,
М.О. Швец
Приведен возможный состав отработанного ядерного топлива (ОЯТ) до и после термической стадии раз-
деления. Проанализирована возможность очистки ОЯТ от продуктов деления на стадии ионизации. Рассчи-
таны траектории движения заряженных частиц – молекулярных ионов, продуктов деления и ядерного топ-
лива, остающихся в ОЯТ, для стадии магнитоплазменного разделения.
ДЕЯКІ ПИТАННЯ ПЕРЕРОБКИ ВЯП НА СТАДІЯХ ІОНІЗАЦІЇ І МАГНІТОПЛАЗМОВОГО
РОЗДІЛЕННЯ В СХРЕЩЕНИХ ПОЛЯХ
В.Б. Юферов, В.В. Катречко, Т.І. Ткачова, С.В. Шарий, О.С. Свічкар, Є.В. Муфель, В.О. Iльїчова,
М.О. Швець
Приведений можливий склад відпрацьованого ядерного палива (ВЯП) до і після термічної стадії поділу.
Проаналізовано можливість очищення ВЯП від продуктів розділення на стадії іонізації. Розраховані траєк-
торії руху заряджених частинок – молекулярних іонів, продуктів поділу і ядерного палива, що залишаються
в ВЯП, для стадії магнітоплазмового розділення.
INTRODUCTION
1. the composition of snf before and after uploading from reactor
2. the features of plasma snf creation
3. the calculation of the motion of plasma ions, metal ixides, in crossed fields
MATHEMATICAL FORMULATION OF PROBLEM.
4. calculations results
conclusions
references
|