Some questions of SNF reprocessing at the stages of ionization and magnetoplasma separation in crossed fields

Possible composition of spent nuclear fuel (SNF) before and after the thermal separation stage is shown. The possibility of SNF purification from fission products (FP) at the ionization stage is analyzed. Trajectories of charged particles - molecular ions, FP and nuclear fuel, remained in SNF, at ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
Hauptverfasser: Yuferov, V.B., Katrechko, V.V., Tkachova, T.I., Shariy, S.V., Svichkar, A.S., Mufel, E.V., Ilichova, V.О., Shvets, M.O.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/112200
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Some questions of SNF reprocessing at the stages of ionization and magnetoplasma separation in crossed fields / V.B. Yuferov, V.V. Katrechko, T.I. Tkachova, S.V. Shariy, A.S. Svichkar, E.V. Mufel, V.О. Ilichova, M.O. Shvets // Вопросы атомной науки и техники. — 2015. — № 4. — С. 345-349. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-112200
record_format dspace
spelling irk-123456789-1122002017-01-19T03:02:13Z Some questions of SNF reprocessing at the stages of ionization and magnetoplasma separation in crossed fields Yuferov, V.B. Katrechko, V.V. Tkachova, T.I. Shariy, S.V. Svichkar, A.S. Mufel, E.V. Ilichova, V.О. Shvets, M.O. Приложения и технологии Possible composition of spent nuclear fuel (SNF) before and after the thermal separation stage is shown. The possibility of SNF purification from fission products (FP) at the ionization stage is analyzed. Trajectories of charged particles - molecular ions, FP and nuclear fuel, remained in SNF, at magnetoplasma separation stage are calculated. Приведений можливий склад відпрацьованого ядерного палива (ВЯП) до і після термічної стадії поділу. Проаналізовано можливість очищення ВЯП від продуктів розділення на стадії іонізації. Розраховані траєкторії руху заряджених частинок – молекулярних іонів, продуктів поділу і ядерного палива, що залишаються в ВЯП, для стадії магнітоплазмового розділення. Приведен возможный состав отработанного ядерного топлива (ОЯТ) до и после термической стадии разделения. Проанализирована возможность очистки ОЯТ от продуктов деления на стадии ионизации. Рассчитаны траектории движения заряженных частиц – молекулярных ионов, продуктов деления и ядерного топлива, остающихся в ОЯТ, для стадии магнитоплазменного разделения. 2015 Article Some questions of SNF reprocessing at the stages of ionization and magnetoplasma separation in crossed fields / V.B. Yuferov, V.V. Katrechko, T.I. Tkachova, S.V. Shariy, A.S. Svichkar, E.V. Mufel, V.О. Ilichova, M.O. Shvets // Вопросы атомной науки и техники. — 2015. — № 4. — С. 345-349. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 28.41.Kw http://dspace.nbuv.gov.ua/handle/123456789/112200 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Приложения и технологии
Приложения и технологии
spellingShingle Приложения и технологии
Приложения и технологии
Yuferov, V.B.
Katrechko, V.V.
Tkachova, T.I.
Shariy, S.V.
Svichkar, A.S.
Mufel, E.V.
Ilichova, V.О.
Shvets, M.O.
Some questions of SNF reprocessing at the stages of ionization and magnetoplasma separation in crossed fields
Вопросы атомной науки и техники
description Possible composition of spent nuclear fuel (SNF) before and after the thermal separation stage is shown. The possibility of SNF purification from fission products (FP) at the ionization stage is analyzed. Trajectories of charged particles - molecular ions, FP and nuclear fuel, remained in SNF, at magnetoplasma separation stage are calculated.
format Article
author Yuferov, V.B.
Katrechko, V.V.
Tkachova, T.I.
Shariy, S.V.
Svichkar, A.S.
Mufel, E.V.
Ilichova, V.О.
Shvets, M.O.
author_facet Yuferov, V.B.
Katrechko, V.V.
Tkachova, T.I.
Shariy, S.V.
Svichkar, A.S.
Mufel, E.V.
Ilichova, V.О.
Shvets, M.O.
author_sort Yuferov, V.B.
title Some questions of SNF reprocessing at the stages of ionization and magnetoplasma separation in crossed fields
title_short Some questions of SNF reprocessing at the stages of ionization and magnetoplasma separation in crossed fields
title_full Some questions of SNF reprocessing at the stages of ionization and magnetoplasma separation in crossed fields
title_fullStr Some questions of SNF reprocessing at the stages of ionization and magnetoplasma separation in crossed fields
title_full_unstemmed Some questions of SNF reprocessing at the stages of ionization and magnetoplasma separation in crossed fields
title_sort some questions of snf reprocessing at the stages of ionization and magnetoplasma separation in crossed fields
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2015
topic_facet Приложения и технологии
url http://dspace.nbuv.gov.ua/handle/123456789/112200
citation_txt Some questions of SNF reprocessing at the stages of ionization and magnetoplasma separation in crossed fields / V.B. Yuferov, V.V. Katrechko, T.I. Tkachova, S.V. Shariy, A.S. Svichkar, E.V. Mufel, V.О. Ilichova, M.O. Shvets // Вопросы атомной науки и техники. — 2015. — № 4. — С. 345-349. — Бібліогр.: 10 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT yuferovvb somequestionsofsnfreprocessingatthestagesofionizationandmagnetoplasmaseparationincrossedfields
AT katrechkovv somequestionsofsnfreprocessingatthestagesofionizationandmagnetoplasmaseparationincrossedfields
AT tkachovati somequestionsofsnfreprocessingatthestagesofionizationandmagnetoplasmaseparationincrossedfields
AT shariysv somequestionsofsnfreprocessingatthestagesofionizationandmagnetoplasmaseparationincrossedfields
AT svichkaras somequestionsofsnfreprocessingatthestagesofionizationandmagnetoplasmaseparationincrossedfields
AT mufelev somequestionsofsnfreprocessingatthestagesofionizationandmagnetoplasmaseparationincrossedfields
AT ilichovavo somequestionsofsnfreprocessingatthestagesofionizationandmagnetoplasmaseparationincrossedfields
AT shvetsmo somequestionsofsnfreprocessingatthestagesofionizationandmagnetoplasmaseparationincrossedfields
first_indexed 2025-07-08T03:31:53Z
last_indexed 2025-07-08T03:31:53Z
_version_ 1837048019937132544
fulltext ISSN 1562-6016. ВАНТ. 2015. №4(98) 345 SOME QUESTIONS OF SNF REPROCESSING AT THE STAGES OF IONIZATION AND MAGNETOPLASMA SEPARATION IN CROSSED FIELDS V.B. Yuferov, V.V. Katrechko, T.I. Tkachova, S.V. Shariy, A.S. Svichkar, E.V. Mufel, V.О. Ilichova, M.O. Shvets National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine Е-mail: v.yuferov@kipt.kharkov.ua Possible composition of spent nuclear fuel (SNF) before and after the thermal separation stage is shown. The possibility of SNF purification from fission products (FP) at the ionization stage is analyzed. Trajectories of charged particles - molecular ions, FP and nuclear fuel, remained in SNF, at magnetoplasma separation stage are calculated. PACS: 2 8 . 4 1 . K w INTRODUCTION The problem of SNF reprocessing and creation of a closed nuclear fuel cycle becomes more urgent. Exist- ing radiochemical technologies of SNF reprocessing can`t fully satisfy the economic, energy and environ- mental needs of humanity. Physical methods of repro- cessing do not lead to the formation of liquid radioac- tive waste, and preliminary estimates are more energy efficient than the existing ones, so they are now again attracted the attention. In KIPT [1 - 3] the purification of SNF from FP in successive stages: thermal heating, ionization and magnetoplasma separation (MPS) of mass groups in plasma rotated in EхВ fields [4, 5], is proposed and investigated. The purpose of present paper is to consider some of the issues of SNF separation at the ionization and magnetoplasma separation stages. 1. THE COMPOSITION OF SNF BEFORE AND AFTER UPLOADING FROM REACTOR As stated in [6] process of plasma SNF purification from FP involves three stages: • removing easily volatile elements and compounds by thermal desorption and evaporation; • removal of elements and compounds with low ion- ization potentials and high ionization cross sections in partially ionized plasma; • separation of heavy and light ions in highly ion- ized plasma (its composition substantially differs from the original composition of SNF and is received after the first two separation stages), by rotating in crossed electric and magnetic fields. Fig. 1. NF and FP of SNF as a function of atomic mass. [7] Thermal phase allows to reduce energy consumption for separation and product cost that will become more apparent after consideration of ionization stage. Fig. 1 shows the structure of SNF immediately after its extrac- tion from reactor – curve 1, and after prolonged storage – curve 2. It can be seen that due to the decay processes SNF composition is changed, also resulting in variation of final composition during reprocessing. In order to avoid the difficulties associated with dif- fusion processes at heating and impurities derivation from multicomponent alloy, that is SNF, it is recom- mended to grind the material of fuel rods, according to given estimates to several microns [8]. Such process as zone melting may become another solution of imple- mentation of thermal heating stage. It allows to avoid an additional step in the technological cycle – material grinding. 2. THE FEATURES OF PLASMA SNF CREATION In [6] dependences of ionization potentials and bind- ing energies of oxides – dissociation energies of FP and uranium, are given and it is pointed out that these values are, so to speak, antiphase. Some FP have dissociation energy values greater than ionization ones, and vice versa, Fig. 2. A similar picture is with FP dimers that may be formed due to high binding energies of some FP. The ionization potentials of pure elements are close to the ionization potentials of dimers of these elements (see curve 3 on Fig. 2), that could be associated with the same energies of the outer electron shells. Fig. 2. Dependences of oxides binding energies (curve 1) and the ionization energies (2 – elements, 3 – dimers) on the atomic number of chemical element (for FP)) ISSN 1562-6016. ВАНТ. 2015. №4(98) 346 For uranium, the ratio of these values is small, but dissociation energy is greater than ionization potentials of oxides that is represented by the horizontal lines in Fig. 2. Thus, only a small proportion of elements have binding energies greater than uranium oxides have. At the same time, ionization potentials of these oxides are close to ionization potentials of uranium and its oxides. This may give interesting features to SNF multicompo- nent plasma. During its heating and ionization of some elements dissociation of oxides will take place, and if it will be in collisionless plasma, the dissociation prod- ucts, mainly in the neutral state, will reach plant walls. They will remain on them or return to gas plasma vol- ume depending on the element properties and wall tem- perature. This effect of molecules dissociation into at- oms, and subsequent transformation of atom into mole- cule on the wall, and its return to the plasma (a kind of recycling) is observed for nitrogen plasma on the DIS-1, where ions N2+ imitated heavy ions (fuel), atoms and atomic ions N+ – fission products (simulation experi- ments, SM – simulation media). But, as follows from [8], the vapor pressures of elements with binding ener- gies smaller than uranium oxides have – significantly more than the vapor pressure of uranium oxides, so dur- ing heating, these elements can be evaporated from SNF (under certain conditions). Thus, there is purification of SNF from the significant amounts of impurities (about 75%) – by termoheating. As a result only zirconium and lanthanides oxides may remain in SNF, see Table, which presents substance in SNF after termoheating stage. The percentage of FP in SNF purified after termoheating stage a . m . u . U – 2 3 5 , % P u – 2 3 9 % 90 2.865 1.0065 94 3.2015 2.16 95 3.25 2.4745 96 3.151 2.47 99 3.066 3.0925 140 3.1575 2.665 141 2.93 2.488 144 2.7375 1.878 Fig. 3. Ionization potentials and binding energies of FP elements and their molecules The ionization potentials of zirconium oxides and lanthanides oxides are not found, but it can be assumed that these values will not be less than the value of the ionization potential of UO2 + that is equal to 5.1 eV (see Fig. 3). Then dissociation of zirconium and lanthanides oxides will not be preceded to UO2 ionization and all the energy for creating plasma from this mixture will go to ionization of molecules, its components, unlike creat- ing of collisionless nitrogen plasma where only ions N2 + are formed and ions N+ are absent, because two atoms N1 formed during dissociation are not contained by the magnetic field, and go on the wall recombining into N2. The ionization potentials of N2 +, N + are 15.5 and 14.5 eV, respectively, and dissociation-binding energy N2. = 9.76 eV. That means that dissociation is much more intensive than the ionization, but ionization of nitrogen atom does not occur because of its short life time in plasma, before reaching the wall τ ~ 100 mcs. More correctly, the concentration of atomic nitrogen ions is negligible (lower by 2-3 orders of magnitude) in comparison with ion concentration N2+ that is 1011 cm-3. Proceeding from SNF composition after termoheat- ing stage, the plasma creation can be determined by the following equations: dNт +/dt =NeN0 тσi тve-Nт +N∑ 0σп т∑vi + +Nт 0N∑ +σп ∑тvi – Nт +/τт; dN∑ +/dt =NeN∑ 0σI ∑ve-N∑ +Nт 0σп ∑тvi + +N∑ 0Nт +σп ∑т vi - N∑ +/τ∑; dNe/dt = NeNт 0 σi тve+ N∑ 0 Ne σi ∑ ve- -NeNт +σi т ve -Ne/τе; W = w 1 + w 2 , where: T and Σ indices belong to the components of fuel and remaining FP; N0 т,Nт + are the density of neutrals and fuel ions; N∑ 0, N∑ + are the density of neutrals and FP ions (oxides of zirconium and lanthanides); Ne = N(т+Σ)+ is the density of electrons; σI is an ionization cross section of the i-th component; σп 12, σп 21 are charge exchange cross sections ∑+ – Т0 and ∑0 - Т+; ve, vi are the velocity of electrons and ions – neutrals; τ is plasma lifetime, according to [9] taken as τ ≈0.4τii lnR; τ1, τ2 are lifetime of ions Т and ∑, respectively, and τ1/ τ2 ~(М∑/Мт)0.5; W is the total power which is released by formation of charged particles (w1 – radiation and w2 – heat). It should be noted that recombination parts in all equations are small compared with the ionization and charge-exchange. As indicated above, this ionization takes place after the heating and evaporation stages. The equations are given in a simplified manner for the explanation of the processes. In connection with large exchange cross sections the importance of these processes in the equations of plas- ma creation are significant, as shown in [9]. Although there is no ionization contribution to sodium, its density is quite high due to the charge exchange process К+ +Na0 =К0 +Na+. In this case it will be: N ∑ 0 + N т + = N ∑ + + N 0 т . As can be seen from Fig. 4, vapor of SNF, fuel and the remained oxides, enter in magnetic field and are ionized. Ionized part goes along the magnetic field in separation region, not ionized – condenses on the oppo- site wall. In the case of priority of fuel ionization cross sections, fuel will be ionized and captured completely. ISSN 1562-6016. ВАНТ. 2015. №4(98) 347 Fig. 4. Scheme of ionization process in plasma source and guiding magnetic field, comprising: 1 – chamber; 2 – evaporator; 3 – vapor jet; 4 – not ionized conden- sate; 5 – pumps to pump out oxygen Then the part of the FP will be ionized, and the other part in the form of neutrals will be deposited on the wall 4 (separation by ionization). Due to the constant stream of molecules plasma is nonequilibrium and function of the electron energy distribution is not symmetrical, its high-temperature wing depending on the neutral flow and input energy rate can increase the slope. 3. THE CALCULATION OF THE MOTION OF PLASMA IONS, METAL IXIDES, IN CROSSED FIELDS After all material in SNF is transferred into plasma phase, the third stage is possible – magnetoplasma sepa- ration by masses in crossed and gradient E and H fields It has been previously suggested separation to heavy and light components, that while the condition for the threshold weight Mc takes place [3]: Мс =erB2 / 4E located on the side surface or along magnetic field. From this perspective, it is advisable to consider the motion of charged particles in collisionless molecular SNF plasma. MATHEMATICAL FORMULATION OF PROBLEM. The vector equation of motion of a charged particle with charge q and mass m in electromagnetic field with electric field intensity E  and magnetic field induction B  is given by [10]: ,ma qE q V B = +       . (1) In a cylindrical coordinate system the motion of charged particle in electric and magnetic fields is de- scribed by the following equations: ( ) ( ) ( ) ( ) ( ) 2 ; 2 ; . r z r z z r m r r q E r B zB m r r q E zB rB mz q E rB r B ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ − = + − + = + − = + −        (2) The system of equations is solved with the initial conditions: r(0)=r0, φ(0)=0, z(0)=z0; ( ) 00 rr V= , ( )0 0ϕ = , ( ) 00 zz V= , where r0, φ0 and z0 – initial co- ordinates of charged particle, Vr0 and Vz0 – components of initial velocity. Components Vr0 and Vz0 are given as: 0 0 sinrV V α= , 0 0 coszV V α= , where V0 – initial veloci- ty, α – the angle at which the particle starts its motion in the system. The magnetic field has two nonzero components, Br and Bz, which are related as divB=0. Given this compo- nents of magnetic field are as follows: 0 0 0 0 0, 0, 3 sin , 0 4 , 50 4 0, 4 ; 0; 0, 0, 12 13sin , 0 4 , 25 4 2 25 , 4 . 25 r z z rB zB z L L L z L B z zB B B z L L B z L ϕ π π π π <   = ≤ <      ≥ =   <    = + + ≤ <      ≥  (3) The axial magnetic field has the form shown in Fig. 5. Based on the estimated size of the SNF magne- toplasma separation plant, the following values are tak- en into accont in calculations: L = 0.25 m; the maximum value of the magnetic field induction B0 = 2.5 Т, the region of uniform magnetic field with induction B0/25 (0.1 Т) begins at z = 1 m. Fig. 5. The distribution of the magnetic field induction along the axis z The electric field intensity has only one nonzero component and is the same throughout the length of the system (Er = E0, Eφ = 0, Ez = 0). 4. CALCULATIONS RESULTS Figs. 6-9 shows the results of calculation of charged particles trajectories, obtained by solving the system of equations (2) for different initial conditions: changing of the initial energy W0 ( 2 0 0 / 2W mV qU= = ), initial angle α and the initial coordinate r0. The intensity of radial electric field is 400 V/m, the initial coordinate z0=0 m. Initial energies of particles – 5.8 (SrO), 5.8 (CeO) и 5.2 eV (UO2), respectively. Impact of mass on charged particles trajectories can be clearly seen from Fig. 6, where the solid line corre- sponds to a particle with mass of 106 a.m.u. (SrO), dashed – 160 a.m.u. (CeO), point line – 270 a.m.u. (UO2). The horizontal line at the level of R = 0.7 m cor- responds to estimated radius of SNF separation plant. ISSN 1562-6016. ВАНТ. 2015. №4(98) 348 Fig. 6. Charged particles motion trajectories for different masses at W0=5 eV, α=45°, r0=0.01 m Charged particles motion trajectories at different values of initial energy (5, 10, 15 and 20 eV) are shown in Fig. 7. Fig. 7. Charged particles motion trajectories for differ- ent masses and initial energies at α=45°, r0=0.01 m Fig. 8 shows particles motion trajectories of all three groups with different values of the initial angle: -80°, -40°, 0, 40° and 80°. Fig. 8. Charged particles motion trajectories for differ- ent masses and initial angles at W0=10 eV, r0=0.01 m Fig. 9 shows particles motion trajectories for three groups at different values of the initial position r0: 1, 3 and 5 cm. It is assumed that the radial dimension of the plasma source does not exceed a value of 5 cm, i.e. the maximum diameter of the plasma source should be 10 cm that is generally acceptable for the dimensions of the particles separation plant. Fig. 9. Charged particles motion trajectories for differ- ent masses and initial radial coordinate at W0=10 eV, α=45° As can be seen, uranium dioxide (atomic weight 270) at any initial conditions reaches the chamber walls, where the appropriate collector will be located (collec- tor for actinides). Charged particles with mass 106 as mass 160 move in the chamber towards the end of the chamber, without reaching its walls. Thus it is possible to separate the group of actinides (NF) from FP re- mained in SNF after preliminary purification at thermal heating stage. CONCLUSIONS At the stage of thermal heating is possible to with- draw a large elements FP amount of SNF. For a substantial reduce the energy consumption in the ionization necessarily have to be derived elements that exceed the value of the ionization potentials of the dissociation energies of molecules. The remaining ox- ides of zirconium, lanthanides and actinides will make molecular plasma. Further separation can occur in a rotating plasma with the implementation of the condi- tions of the threshold mass substance. Elements having a mass greater than the threshold will go out radially along helical paths on the limiting surface, less – go along the magnetic field. To simulate the separation NF from FP at stages of ionization and magnetoplasma sep- aration in crossed fields SNF composition may include oxides of non-radioactive isotope uranium-238, zirconi- um and lanthanides. REFERENCES 1. A.N. Dovbnya, A.M. Egorov, О.М. Shvets, V.B. Yuferov, S.V. Nevstruyev. Conceptual project of the plasma resonant separator // Problems of Atomic Science and Ttechnology. Series “Plasma Electronics and New Methods of Acceleration”. 2003, v. 4, p. 323-325. 2. A.N. Dovbnya, O.S. Druy, A.M. Egorov, et al. Comparative analysis of projects of plasma separa- tors of isotopes with oscillations on cyclotron fre- quencies // Problems of Atomic Science and Tech- nology. Series “Plasma Electronics and New Meth- ods of Acceleration”. 2004, v. 4, p. 51-57. 3. V.B. Yuferov, A.S. Svichkar, S.V. Shariy, V.V. Katrechko, T.I. Tkachova. Dynamics ion flows in a rotating plasma // East European Journal of Physics. 2014, v. 1, №2, p. 96-99. 4. US Patent №6096220. Plasma Mass Filter / Tihiro Ohkawa // Published 01.08.2000. 5. V.A. Zhil’tsov, V.M. Kulygin, N.N. Semashko, et al. Plasma separation of the elements applied to nuclear materials handling // Atomic Energy. 2006, v. 101, № 4, p. 755-759. 6. V.B. Yuferov, S.V. Shariy, V.V. Katrechko, et al. Features of molecular plasma SNF after heating and ionization // Problems of Atomic Science and Tech- nology. 2014, № 5, p. 63-68. 7. https://www-nds.iaea.org/sgnucdat/ 8. V.B. Yuferov, V.V. Katrechko, S.V. Shariy, A.S. Svichkar, T.I. Tkachova, E.V. Mufel, V.О. Ilichova, S.N. Khizhnyak. Physical principles of the multicomponent media’ separation at ther- moheating / / Problems of Atomic Science and Technology. 2015, № 2, p. 43-47. https://www-nds.iaea.org/sgnucdat/ ISSN 1562-6016. ВАНТ. 2015. №4(98) 349 9. E.A. Lisenko, E.I. Skibenko, V.B. Yuferov. Effect of vacuum conditions for admission of light impurities in the plasma at the initial stage of the discharge: Review. Мoscow: “CRIatominform”, 1987, 18 p. 10. D.V. Sivuhin. General course of physics. Electricity. Moskow: “Fizmatlit”, 2004, 656 p. Article received 280.05.2015 НЕКОТОРЫЕ ВОПРОСЫ ПЕРЕРАБОТКИ ОЯТ НА СТАДИЯХ ИОНИЗАЦИИ И МАГНИТОПЛАЗМЕННОГО РАЗДЕЛЕНИЯ В СКРЕЩЕННЫХ ПОЛЯХ В.Б. Юферов, В.В. Катречко, Т.И. Ткачёва, С.В. Шарый, А.С. Свичкарь, Е.В. Муфель, В.О. Ильичева, М.О. Швец Приведен возможный состав отработанного ядерного топлива (ОЯТ) до и после термической стадии раз- деления. Проанализирована возможность очистки ОЯТ от продуктов деления на стадии ионизации. Рассчи- таны траектории движения заряженных частиц – молекулярных ионов, продуктов деления и ядерного топ- лива, остающихся в ОЯТ, для стадии магнитоплазменного разделения. ДЕЯКІ ПИТАННЯ ПЕРЕРОБКИ ВЯП НА СТАДІЯХ ІОНІЗАЦІЇ І МАГНІТОПЛАЗМОВОГО РОЗДІЛЕННЯ В СХРЕЩЕНИХ ПОЛЯХ В.Б. Юферов, В.В. Катречко, Т.І. Ткачова, С.В. Шарий, О.С. Свічкар, Є.В. Муфель, В.О. Iльїчова, М.О. Швець Приведений можливий склад відпрацьованого ядерного палива (ВЯП) до і після термічної стадії поділу. Проаналізовано можливість очищення ВЯП від продуктів розділення на стадії іонізації. Розраховані траєк- торії руху заряджених частинок – молекулярних іонів, продуктів поділу і ядерного палива, що залишаються в ВЯП, для стадії магнітоплазмового розділення. INTRODUCTION 1. the composition of snf before and after uploading from reactor 2. the features of plasma snf creation 3. the calculation of the motion of plasma ions, metal ixides, in crossed fields MATHEMATICAL FORMULATION OF PROBLEM. 4. calculations results conclusions references