Analysis and optimization of a mode of industrial product processing at an electron accelerator

By means of computer simulation, the factors determinating non-uniformity of the volume distribution of the absorbed dose at product processing by scanned electron beam, namely, the energy spectrum and scanning mode, product density and homogeneity of its distribution, as well as the distance betwee...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Nikiforov, V.I., Pomatsalyuk, R.I., Rogov, Yu.V., Tenishev, A.Eh., Uvarov, V.L., Zakharchenko, A.A.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/112351
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Analysis and optimization of a mode of industrial product processing at an electron accelerator / V.I. Nikiforov, R.I. Pomatsalyuk, Yu.V. Rogov, A.Eh. Tenishev, V.L. Uvarov, A.A. Zakharchenko // Вопросы атомной науки и техники. — 2015. — № 6. — С. 90-94. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-112351
record_format dspace
spelling irk-123456789-1123512017-01-21T03:02:46Z Analysis and optimization of a mode of industrial product processing at an electron accelerator Nikiforov, V.I. Pomatsalyuk, R.I. Rogov, Yu.V. Tenishev, A.Eh. Uvarov, V.L. Zakharchenko, A.A. Применение ускорителей в радиационных технологиях By means of computer simulation, the factors determinating non-uniformity of the volume distribution of the absorbed dose at product processing by scanned electron beam, namely, the energy spectrum and scanning mode, product density and homogeneity of its distribution, as well as the distance between the objects moving through the irradiation zone, are studied. On the basis of the PENELOPE-2008 package, a code for calculating the dose distribution and its non-uniformity coefficient with due regard to the beam characteristics, surface density and velocity of the object, has been developed. Verification of the code was carried out by comparison of simulation results with the experimental data obtained using a reference polystyrene calorimeter RISO as well as by dose mapping in a standard phantom. Методом моделювання досліджені чинники, що визначають нерівномірність об'ємного розподілу поглинутої дози при обробці продукції скануючим пучком електронів: енергетичний спектр і форма розгортки пучка, щільність об'єкту та однорідність її розподілу, а також відстань між об'єктами, що переміщують через зону опромінювання. На основі програмної системи PENELOPE-2008 розроблений код для розрахунку розподілу дози і коефіцієнта його неоднорідності з урахуванням характеристик пучка, поверхневої щільності і швидкості переміщення об'єкту. Виконана верифікація коду шляхом порівняння результатів моделювання з експериментальними даними, отриманими за допомогою референтного калориметра з полістиролу RISO, а також методом картування дози в стандартному фантомі. Методом моделирования исследованы факторы, определяющие неравномерность объемного распределения поглощенной дозы при обработке продукции сканирующим пучком электронов: энергетический спектр и форма развертки пучка, плотность объекта и однородность ее распределения, а также расстояние между объектами, перемещаемыми через зону облучения. На основе программной системы PENELOPE-2008 разработан код для расчета распределения дозы и коэффициента его неоднородности с учетом характеристик пучка, поверхностной плотности и скорости перемещения объекта. Выполнена верификация кода путем сравнения результатов моделирования с экспериментальными данными, полученными с помощью референтного полистирольного калориметра RISO, а также методом картографирования дозы в стандартном фантоме. 2015 Article Analysis and optimization of a mode of industrial product processing at an electron accelerator / V.I. Nikiforov, R.I. Pomatsalyuk, Yu.V. Rogov, A.Eh. Tenishev, V.L. Uvarov, A.A. Zakharchenko // Вопросы атомной науки и техники. — 2015. — № 6. — С. 90-94. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS: 07.05Tp; 29.27.-a; 81.40.Wx http://dspace.nbuv.gov.ua/handle/123456789/112351 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Применение ускорителей в радиационных технологиях
Применение ускорителей в радиационных технологиях
spellingShingle Применение ускорителей в радиационных технологиях
Применение ускорителей в радиационных технологиях
Nikiforov, V.I.
Pomatsalyuk, R.I.
Rogov, Yu.V.
Tenishev, A.Eh.
Uvarov, V.L.
Zakharchenko, A.A.
Analysis and optimization of a mode of industrial product processing at an electron accelerator
Вопросы атомной науки и техники
description By means of computer simulation, the factors determinating non-uniformity of the volume distribution of the absorbed dose at product processing by scanned electron beam, namely, the energy spectrum and scanning mode, product density and homogeneity of its distribution, as well as the distance between the objects moving through the irradiation zone, are studied. On the basis of the PENELOPE-2008 package, a code for calculating the dose distribution and its non-uniformity coefficient with due regard to the beam characteristics, surface density and velocity of the object, has been developed. Verification of the code was carried out by comparison of simulation results with the experimental data obtained using a reference polystyrene calorimeter RISO as well as by dose mapping in a standard phantom.
format Article
author Nikiforov, V.I.
Pomatsalyuk, R.I.
Rogov, Yu.V.
Tenishev, A.Eh.
Uvarov, V.L.
Zakharchenko, A.A.
author_facet Nikiforov, V.I.
Pomatsalyuk, R.I.
Rogov, Yu.V.
Tenishev, A.Eh.
Uvarov, V.L.
Zakharchenko, A.A.
author_sort Nikiforov, V.I.
title Analysis and optimization of a mode of industrial product processing at an electron accelerator
title_short Analysis and optimization of a mode of industrial product processing at an electron accelerator
title_full Analysis and optimization of a mode of industrial product processing at an electron accelerator
title_fullStr Analysis and optimization of a mode of industrial product processing at an electron accelerator
title_full_unstemmed Analysis and optimization of a mode of industrial product processing at an electron accelerator
title_sort analysis and optimization of a mode of industrial product processing at an electron accelerator
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2015
topic_facet Применение ускорителей в радиационных технологиях
url http://dspace.nbuv.gov.ua/handle/123456789/112351
citation_txt Analysis and optimization of a mode of industrial product processing at an electron accelerator / V.I. Nikiforov, R.I. Pomatsalyuk, Yu.V. Rogov, A.Eh. Tenishev, V.L. Uvarov, A.A. Zakharchenko // Вопросы атомной науки и техники. — 2015. — № 6. — С. 90-94. — Бібліогр.: 7 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT nikiforovvi analysisandoptimizationofamodeofindustrialproductprocessingatanelectronaccelerator
AT pomatsalyukri analysisandoptimizationofamodeofindustrialproductprocessingatanelectronaccelerator
AT rogovyuv analysisandoptimizationofamodeofindustrialproductprocessingatanelectronaccelerator
AT tenishevaeh analysisandoptimizationofamodeofindustrialproductprocessingatanelectronaccelerator
AT uvarovvl analysisandoptimizationofamodeofindustrialproductprocessingatanelectronaccelerator
AT zakharchenkoaa analysisandoptimizationofamodeofindustrialproductprocessingatanelectronaccelerator
first_indexed 2025-07-08T03:47:30Z
last_indexed 2025-07-08T03:47:30Z
_version_ 1837049001607692288
fulltext ISSN 1562-6016. ВАНТ. 2015. №6(100) 90 ПРИМЕНЕНИЕ УСКОРИТЕЛЕЙ В РАДИАЦИОННЫХ ТЕХНОЛОГИЯХ ANALYSIS AND OPTIMIZATION OF A MODE OF INDUSTRIAL PRODUCT PROCESSING AT AN ELECTRON ACCELERATOR V.I. Nikiforov, R.I. Pomatsalyuk, Yu.V. Rogov, A.Eh. Tenishev, V.L. Uvarov, A.A. Zakharchenko National Science Center "Kharkov Institute of Physics and Technology", Kharkov, Ukraine E-mail: uvarov@kipt.kharkov.ua By means of computer simulation, the factors determinating non-uniformity of the volume distribution of the ab- sorbed dose at product processing by scanned electron beam, namely, the energy spectrum and scanning mode, product density and homogeneity of its distribution, as well as the distance between the objects moving through the irradiation zone, are studied. On the basis of the PENELOPE-2008 package, a code for calculating the dose distribution and its non-uniformity coefficient with due regard to the beam characteristics, surface density and velocity of the object, has been developed. Verification of the code was carried out by comparison of simulation results with the experimental data obtained using a reference polystyrene calorimeter RISO as well as by dose mapping in a standard phantom. PACS: 07.05Tp; 29.27.-a; 81.40.Wx INTRODUCTION One of basic criteria of quality at industrial radiation processing is ensuring the minimum value of the dose non- uniformity factor max min D Dk D = , (1) where Dmin and Dmax − are respectively the minimum and maximum values of the dose throughout the pro- cessed product, where Dmin and Dmax are specified by a production schedule. A widespread method of optimization of a pro- cessing mode is computer simulation (see, e.g., [1]). Commonly, a regime with uniform distribution of linear density of the scanned electron beam with conservation its energy spectrum in the course of scanning is consid- ered. Such assumption is true for accelerators with nar- row spectrum. In case of the machine having wide spec- trum, it is necessary to consider its alteration with the angle of the beam deflection by magnetic field of the scanner device. Under such conditions, an additional parameter of optimization can be the form of the beam scan. An actual industrial process includes also the pass- ing of the processed objects with specified velocity through the irradiation zone. If product is packed in the boxes (e.g., at sterilization of medical devices [2]) the dose distribution along object edges differs sufficiently from one obtained in their central part. Earlier, for calculating dose distribution in the im- movable objects, the program modules “Beam”, “Transport” and “Dose” on the basis of the transport code PENELOPE-2008 have been developed and vali- dated [3]. The modules describe respectively the spatial radiant distribution of particles in a primary beam, their transport to an object and interaction with it, in particu- lar, distribution of the absorbed energy in the object. Later on, a modification of that package for calculating dose distribution in the movable objects was carried out [4]. In the work, the results of application of the modi- fied code for analysis of main factors determining the dose distribution and for optimizing, in such a way, the regimes of the industrial processing are described. 1. EFFECT OF SCAN FORM Study of influence of the beam scanning mode on dose distribution at a wide beam spectrum was carried out for the conditions corresponding to the accelerator LU-10 of NSC KIPT [5]. The center of the scanner elec- tromagnet is positioned at a distance of 51 cm from a foil of the accelerator output window. A PC-driven con- trol system of the scanner provides the possibility to set any form and amplitude of the beam sweep [6]. In calculations, it was supposed, that the axis Z co- incides with the accelerator axis. Axis Х is directed ver- tically and lays in a plane of the beam scanning. The axis Y is directed horizontally and coincides with the direction of moving of the processed object. Fig. 1 presents an actual spectrum of the beam used in the simulation. The electron energy E in the maxi- mum of the spectrum makes 9.3 МeV. A deflection an- gle α of the electrons in the scanner device was de- scribed by relationship α (E) ∼Е-1. (2) , , r el . u n. Fig.1. Spectrum of the LU-10 beam As a standardized object, a parallelepiped from foamed polystyrene measuring 35 cm (thickness), 35 cm (height), and 70 cm (length) was considered. The object density makes 0.12 g/cm3, that corresponds its surface density of 4.2 g/cm2. It was considered also, that the mailto:uvarov@kipt.kharkov.ua ISSN 1562-6016. ВАНТ. 2015. №6(100) 91 object moves through the irradiation zone with velocity 2 cm/s at an average beam current of 800 mА. The variants with linear mode of the sweep at both half-cycles of the beam scanning (LinLin), with linear mode in one half-cycle and cosine in the other (LinCos), as well as with the cosine-type sweep in the both half- cycles (CosCos) have been considered. In addition, the cases with direct representation of the specified spec- trum of the electrons on the object (version A), and also with their distributions resulting from a law of changing the current in the scanner electromagnet with due regard to the change of the beam distribution at its deflection (version B) have been studied. In the Table 1, the results of calculation of co- ordinates of the points in the object with minimum dose Dmin, and also the value of the dose non-uniformity fac- tor for each variant of the beam sweep are presented. It is seen, that in the case of double-linear sweep (LinLin) in the both versions the dose distribution preserves it appearance. In the variants LinCos and CosCos, it is essentially changed as to the co-ordinates of the area with minimum dose Dmin, and in relation of the dose non- uniformity factor. So the variant LinCos provides essential decrease in this factor. Table 1 Coordinates of the point with the minimum dose and dose non-uniformity factor in the reference object at different forms of the current in the scanner magnet A B LinLin XMIN,YMIN,ZMI N X= 17, Y=-33.5, Z= 0.5 X=-17, Y=-33.5, Z= 0.5 DMAX/DMIN 2.88 2.87 LinCos XMIN,YMIN,ZMI N X= 17, Y=-34.5, Z= 15.5 X= 17, Y=-34.5, Z= 17.5 DMAX/DMIN 2.51 2.23 CosCos XMIN,YMIN,ZMI N X=-17, Y=-34.5, Z= 13.5 X= 0.0, Y=-34.5, Z= 34.5 DMAX/DMIN 2.41 2.62 2. EFFECT OF OBJECT DENSITY Dependence of the dose distribution in a processed object from its density was analyzed for the LinCos sweep and conditions of the LU-10 Linac. This time as an object a parallelepiped from expanded polystyrene measuring 39×79×37 cm (X, Y, Z) has been considered. Those parameters are close to the characteristics of a phantom used for dose mapping at a procedure of the radiator qualification [4]. In calculations, it was sup- posed, that the object moves via the irradiation zone at a velocity of 1.2 cm/sec, the amplitude of the beam sweep at the accelerator output window makes 7.2 cm. 0 5 10 15 20 25 30 35 0 5 10 15 20 H, cm D os e, k G y 1 2 3 6 4 5 7 8 Z a 0 5 10 15 20 25 30 35 5 10 15 20 25 30 H, cm Do se , k G y 1 2 3 4 5 6 7 8 Z b Fig. 2. Dose distribution along object’s edge In Figs. 2-4, the results of calculation of the dose distribution along the three spokes crossing the object with various surface density t (g/cm2) in different places in parallel of the axis Z are plotted (a – one-sided irradi- ation, b – two-sided irradiation): 1 – t=3.33; 2 – t=3.70; 3 – t=4.44; 4 – t=4.81; 5 – t=5.55; 6 – t=6.66; 7 – t=9.25; 8 – t=11.1. 0 5 10 15 20 25 30 35 0 5 10 15 20 25 D os e, k G y H, cm 1 2 3 4 5 67 8 Z a ISSN 1562-6016. ВАНТ. 2015. №6(100) 92 0 5 10 15 20 25 30 35 5 10 15 20 25 30 35 40 H, cm D os e, k G y 1 2 3 4 5 6 7 8 Z b Fig. 3. Dose distribution along the central axes of the upper object’s plane 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 H, cm D os e, k G y 1 2 3 4 567 8 Z a 0 5 10 15 20 25 30 35 10 15 20 25 30 35 40 45 50 55 Do se , k G y H, cm 1 2 3 4 5 6 7 8 Z b Fig. 4. Dose distribution along the central axis of the object In Fig. 5, influence of distance between the objects moving through the irradiation zone on the dose non- uniformity factor is shown. t Fig. 5. Dependence of the dose non- uniformity factor from distance between objects It is evident, that at an increase of the object density and interval between the irradiated objects the non- uniformity of the dose distribution increases. 3. EFFECT OF NON-UNIFORMITY OF THE OBJECT DENSITY DISTRIBUTION As a rule, a processed object is not homogeneous. For example, at radiation sterilization of medical devic- es each unit is packed in the individual wrap. A certain quantity of the units is put up into a transport box, which is exposed to irradiation. If the transport box with volume V contains the n individual units of volume v1 each, the estimation of the effective size of in homoge- neity can be received from the expression 1/ 3 1 .ef Vh v n  = −    (3) In calculations, the four variants of the processed ob- ject inhomogeneity were considered: - homogeneous object; - object with effective size of the inhomogeneity hef=0.5 cm; hef=1.0 cm; hef=2.0 cm. In every case the object corresponded a parallelepi- ped from cellulose measuring 36×108×36 cm (XxYxZ) with average surface density t=3.08 g/cm2. Those char- acteristics are close to parameters of the boxes with bandaging material sterilized at the LU-10 plant. The actual distance between objects makes 12 cm (an inter- val between transport containers on the plant conveyor), at a velocity of their moving of 2.1 cm/s. In Fig. 6, the variants of the objects surface density distribution de- pending on the effective size of the inhomogeneity, and also the resulting dose distributions along the central axis of the object (Fig. 7) are shown. 0 1 2 3 4 5 6 7 8 9 10 11 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 hef = 0.5 cm hef = 1 cm hef = 2 cm dN /d t t, g/cm2 Fig. 6. Distribution of surface density of the object at different size of inhomogeneity ISSN 1562-6016. ВАНТ. 2015. №6(100) 93 0 5 10 15 20 25 30 35 0 2 4 6 8 10 12 14 16 Homogen hef= 0.5 cm hef= 1 cm hef= 2 cm Do se , k G y Z, cm Fig. 7. Dose distribution along the central axis of the object, one-sided irradiation 4. BENCHMARKING Experimental study was carried out with the use of a rectangular phantom from heavy expanded polystyrene (ρ =0.114 g/cm3) measuring 39×79×37 cm (X, Y, Z). For dose mapping, the phantom contains a 3D net of the slots for placing the dosimeters (Fig. 8). The routine РММА dosimeters (Harwell Red 4034) calibrated on- site with the use of reference polystyrene dosimeters were applied in the measurements. The phantom was two-side irradiated with the beam having the spectral maximum 9.3 МeV (see Fig. 1) at an average beam cur- rent of 0.8 mА and the LinCos sweep with frequency 3 Hz. A velocity of the phantom conveyance made 1.2 cm/s. #11 #21 #12 #13 #14 #15 #16 #17 #18 #19 #22 #23 #24 #25 #26 #27 #28 #29 #31 #32 #33 #34 #35 #36 #37 #38 #39 39 0 790 37 0 1 4 3 2 5 6 . Vconv e- Fig. 8. 3D-phantom with slot numbering In Fig. 9, the data of the dose mapping are given. It is obvious, that in point of definition of both the areas with Dmin and Dmax, and dose non-uniformity factor, the results received by the simulation and experimentally are satisfactory agreed. 10 15 20 25 30 35 40 20 25 30 35 40 45 50 55 D os e, k G y exper calc Point of interest number Fig. 9. Results of dose mapping In the Table 2, the results of the dose measurement with the polystyrene calorimetric dosimeters RISO [7] at their passing with various velocity through the irradi- ation zone, and also calculated with the use of devel- oped sw are listed. It can be seen, that both the data dif- fer no more, than on 7%. Table 2 Absorbed dose in the calorimetric dosimeters at a various velocity of the conveyor Conveyor velocity, cm/s Average beam current, mА Calculated dose, kGy Measured dose, kGy 4.88 0.816 6.9 6.5 3.65 0.808 9.1 9.2 2.43 0.801 13.5 13.4 1.82 0.804 18.1 17.9 1.22 0.809 27.2 26.5 0.92 0.804 36.1 38.8 CONCLUSIONS Developed sw provides the possibility of analysis and optimization of a product processing mode at an electron accelerator with the scanned beam against all the key parameters determining the value of the ab- sorbed dose and its spatial distribution within an irradi- ated object. REFERENCES 1. V.M. Lazurik, V.T. Lazurik, G. Popov, Yu. Rogov, and Z. Zimek. Information System and Software for Quality Control of Radiation Processing // IAEA. Warszava. ISBN 978-83-929013-8-9, 2001. 2. Sterilization of health care products-Radiation-Part 1: Requirements for development, validation and ISSN 1562-6016. ВАНТ. 2015. №6(100) 94 routine control of a sterilization process for medical devices / ISO 11137-1:2006(E). 3. F. Salvat, J.M. Fernández-Varea, and J. Sempau. PENELOPE–2008 A Code System for Monte Carlo Simulation of Electron and Photon Transport // OECD Nuclear Energy Agency (Issy-les- Moulineaux) France. 2008. 4. V.I. Nikiforov, R.I. Pomatsalyuk, Yu.V. Rogov, V.A. Shevchenko, A.Eh. Tenishev, V.L. Uvarov. Development and Validation of Software for Simu- lation of Product Processing Regimes at an Electron Accelerator // Problems of Atomic Science and Technology. Series “Nuclear Physics Investiga- tions”. 2013, № 6, p. 156-160. 5. V.N. Boriskin, A.N. Dovbnya, V.I. Nikiforov, et al.. Development of Radiation Technologies and Tests in “Accelerator” Sc&R Est., NSC KIPT // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations”. 2008, № 5, p. 150-154. 6. S.P. Karasyov, R.I. Pomatsalyuk, A.Eh. Tenishev, V.L. Uvarov, I.N. Shlyakhov. A РC-Controlled Beam Scanning System at the Technological Elec- tron Linac // Problems of Atomic Science and Tech- nology Series “Nuclear Physics Investigations”. 2006, № 3, p. 191-193. 7. Practice for Use of Calorimetric Dosimetry Systems for Electron Dose Measurements and Routine Do- simetry System / ISO ASTM 51631:2011 (E). Article received 23.10.2015 ISSN 1562-6016. ВАНТ. 2015. №6(100) 95 АНАЛИЗ И ОПТИМИЗАЦИЯ РЕЖИМА ПРОМЫШЛЕННОЙ ОБРАБОТКИ ПРОДУКЦИИ НА УСКОРИТЕЛЕ ЭЛЕКТРОНОВ В.И. Никифоров, Р.И. Помацалюк, Ю.В. Рогов, А.Э. Тенишев, В.Л. Уваров, А.А. Захарченко Методом моделирования исследованы факторы, определяющие неравномерность объемного распределе- ния поглощенной дозы при обработке продукции сканирующим пучком электронов: энергетический спектр и форма развертки пучка, плотность объекта и однородность ее распределения, а также расстояние между объектами, перемещаемыми через зону облучения. На основе программной системы PENELOPE-2008 раз- работан код для расчета распределения дозы и коэффициента его неоднородности с учетом характеристик пучка, поверхностной плотности и скорости перемещения объекта. Выполнена верификация кода путем сравнения результатов моделирования с экспериментальными данными, полученными с помощью рефе- рентного полистирольного калориметра RISO, а также методом картографирования дозы в стандартном фантоме. АНАЛІЗ ТА ОПТИМІЗАЦІЯ РЕЖИМУ ПРОМИСЛОВОЇ ОБРОБКИ ПРОДУКЦІЇ НА ПРИСКОРЮВАЧІ ЕЛЕКТРОНІВ В.І. Нікіфоров, Р.І. Помацалюк, Ю.В. Рогов, А.Е. Тєнішев, В.Л. Уваров, О.О. Захарченко Методом моделювання досліджені чинники, що визначають нерівномірність об'ємного розподілу погли- нутої дози при обробці продукції скануючим пучком електронів: енергетичний спектр і форма розгортки пучка, щільність об'єкту та однорідність її розподілу, а також відстань між об'єктами, що переміщують через зону опромінювання. На основі програмної системи PENELOPE-2008 розроблений код для розрахунку роз- поділу дози і коефіцієнта його неоднорідності з урахуванням характеристик пучка, поверхневої щільності і швидкості переміщення об'єкту. Виконана верифікація коду шляхом порівняння результатів моделювання з експериментальними даними, отриманими за допомогою референтного калориметра з полістиролу RISO, а також методом картування дози в стандартному фантомі. INTRODUCTION 1. EFFECT OF SCAN FORM 2. EFFECT OF OBJECT DENSITY 3. EFFECT OF NON-UNIFORMITY OF THE OBJECT DENSITY DISTRIBUTION 4. BENCHMARKING CONCLUSIONS