Analysis and optimization of a mode of industrial product processing at an electron accelerator
By means of computer simulation, the factors determinating non-uniformity of the volume distribution of the absorbed dose at product processing by scanned electron beam, namely, the energy spectrum and scanning mode, product density and homogeneity of its distribution, as well as the distance betwee...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2015
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/112351 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Analysis and optimization of a mode of industrial product processing at an electron accelerator / V.I. Nikiforov, R.I. Pomatsalyuk, Yu.V. Rogov, A.Eh. Tenishev, V.L. Uvarov, A.A. Zakharchenko // Вопросы атомной науки и техники. — 2015. — № 6. — С. 90-94. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-112351 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1123512017-01-21T03:02:46Z Analysis and optimization of a mode of industrial product processing at an electron accelerator Nikiforov, V.I. Pomatsalyuk, R.I. Rogov, Yu.V. Tenishev, A.Eh. Uvarov, V.L. Zakharchenko, A.A. Применение ускорителей в радиационных технологиях By means of computer simulation, the factors determinating non-uniformity of the volume distribution of the absorbed dose at product processing by scanned electron beam, namely, the energy spectrum and scanning mode, product density and homogeneity of its distribution, as well as the distance between the objects moving through the irradiation zone, are studied. On the basis of the PENELOPE-2008 package, a code for calculating the dose distribution and its non-uniformity coefficient with due regard to the beam characteristics, surface density and velocity of the object, has been developed. Verification of the code was carried out by comparison of simulation results with the experimental data obtained using a reference polystyrene calorimeter RISO as well as by dose mapping in a standard phantom. Методом моделювання досліджені чинники, що визначають нерівномірність об'ємного розподілу поглинутої дози при обробці продукції скануючим пучком електронів: енергетичний спектр і форма розгортки пучка, щільність об'єкту та однорідність її розподілу, а також відстань між об'єктами, що переміщують через зону опромінювання. На основі програмної системи PENELOPE-2008 розроблений код для розрахунку розподілу дози і коефіцієнта його неоднорідності з урахуванням характеристик пучка, поверхневої щільності і швидкості переміщення об'єкту. Виконана верифікація коду шляхом порівняння результатів моделювання з експериментальними даними, отриманими за допомогою референтного калориметра з полістиролу RISO, а також методом картування дози в стандартному фантомі. Методом моделирования исследованы факторы, определяющие неравномерность объемного распределения поглощенной дозы при обработке продукции сканирующим пучком электронов: энергетический спектр и форма развертки пучка, плотность объекта и однородность ее распределения, а также расстояние между объектами, перемещаемыми через зону облучения. На основе программной системы PENELOPE-2008 разработан код для расчета распределения дозы и коэффициента его неоднородности с учетом характеристик пучка, поверхностной плотности и скорости перемещения объекта. Выполнена верификация кода путем сравнения результатов моделирования с экспериментальными данными, полученными с помощью референтного полистирольного калориметра RISO, а также методом картографирования дозы в стандартном фантоме. 2015 Article Analysis and optimization of a mode of industrial product processing at an electron accelerator / V.I. Nikiforov, R.I. Pomatsalyuk, Yu.V. Rogov, A.Eh. Tenishev, V.L. Uvarov, A.A. Zakharchenko // Вопросы атомной науки и техники. — 2015. — № 6. — С. 90-94. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS: 07.05Tp; 29.27.-a; 81.40.Wx http://dspace.nbuv.gov.ua/handle/123456789/112351 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Применение ускорителей в радиационных технологиях Применение ускорителей в радиационных технологиях |
spellingShingle |
Применение ускорителей в радиационных технологиях Применение ускорителей в радиационных технологиях Nikiforov, V.I. Pomatsalyuk, R.I. Rogov, Yu.V. Tenishev, A.Eh. Uvarov, V.L. Zakharchenko, A.A. Analysis and optimization of a mode of industrial product processing at an electron accelerator Вопросы атомной науки и техники |
description |
By means of computer simulation, the factors determinating non-uniformity of the volume distribution of the absorbed dose at product processing by scanned electron beam, namely, the energy spectrum and scanning mode, product density and homogeneity of its distribution, as well as the distance between the objects moving through the irradiation zone, are studied. On the basis of the PENELOPE-2008 package, a code for calculating the dose distribution and its non-uniformity coefficient with due regard to the beam characteristics, surface density and velocity of the object, has been developed. Verification of the code was carried out by comparison of simulation results with the experimental data obtained using a reference polystyrene calorimeter RISO as well as by dose mapping in a standard phantom. |
format |
Article |
author |
Nikiforov, V.I. Pomatsalyuk, R.I. Rogov, Yu.V. Tenishev, A.Eh. Uvarov, V.L. Zakharchenko, A.A. |
author_facet |
Nikiforov, V.I. Pomatsalyuk, R.I. Rogov, Yu.V. Tenishev, A.Eh. Uvarov, V.L. Zakharchenko, A.A. |
author_sort |
Nikiforov, V.I. |
title |
Analysis and optimization of a mode of industrial product processing at an electron accelerator |
title_short |
Analysis and optimization of a mode of industrial product processing at an electron accelerator |
title_full |
Analysis and optimization of a mode of industrial product processing at an electron accelerator |
title_fullStr |
Analysis and optimization of a mode of industrial product processing at an electron accelerator |
title_full_unstemmed |
Analysis and optimization of a mode of industrial product processing at an electron accelerator |
title_sort |
analysis and optimization of a mode of industrial product processing at an electron accelerator |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2015 |
topic_facet |
Применение ускорителей в радиационных технологиях |
url |
http://dspace.nbuv.gov.ua/handle/123456789/112351 |
citation_txt |
Analysis and optimization of a mode of industrial product processing at an electron accelerator / V.I. Nikiforov, R.I. Pomatsalyuk, Yu.V. Rogov, A.Eh. Tenishev, V.L. Uvarov, A.A. Zakharchenko // Вопросы атомной науки и техники. — 2015. — № 6. — С. 90-94. — Бібліогр.: 7 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT nikiforovvi analysisandoptimizationofamodeofindustrialproductprocessingatanelectronaccelerator AT pomatsalyukri analysisandoptimizationofamodeofindustrialproductprocessingatanelectronaccelerator AT rogovyuv analysisandoptimizationofamodeofindustrialproductprocessingatanelectronaccelerator AT tenishevaeh analysisandoptimizationofamodeofindustrialproductprocessingatanelectronaccelerator AT uvarovvl analysisandoptimizationofamodeofindustrialproductprocessingatanelectronaccelerator AT zakharchenkoaa analysisandoptimizationofamodeofindustrialproductprocessingatanelectronaccelerator |
first_indexed |
2025-07-08T03:47:30Z |
last_indexed |
2025-07-08T03:47:30Z |
_version_ |
1837049001607692288 |
fulltext |
ISSN 1562-6016. ВАНТ. 2015. №6(100) 90
ПРИМЕНЕНИЕ УСКОРИТЕЛЕЙ В РАДИАЦИОННЫХ ТЕХНОЛОГИЯХ
ANALYSIS AND OPTIMIZATION OF A MODE OF INDUSTRIAL
PRODUCT PROCESSING AT AN ELECTRON ACCELERATOR
V.I. Nikiforov, R.I. Pomatsalyuk, Yu.V. Rogov, A.Eh. Tenishev, V.L. Uvarov,
A.A. Zakharchenko
National Science Center "Kharkov Institute of Physics and Technology", Kharkov, Ukraine
E-mail: uvarov@kipt.kharkov.ua
By means of computer simulation, the factors determinating non-uniformity of the volume distribution of the ab-
sorbed dose at product processing by scanned electron beam, namely, the energy spectrum and scanning mode, product
density and homogeneity of its distribution, as well as the distance between the objects moving through the irradiation
zone, are studied. On the basis of the PENELOPE-2008 package, a code for calculating the dose distribution and its
non-uniformity coefficient with due regard to the beam characteristics, surface density and velocity of the object, has
been developed. Verification of the code was carried out by comparison of simulation results with the experimental
data obtained using a reference polystyrene calorimeter RISO as well as by dose mapping in a standard phantom.
PACS: 07.05Tp; 29.27.-a; 81.40.Wx
INTRODUCTION
One of basic criteria of quality at industrial radiation
processing is ensuring the minimum value of the dose
non- uniformity factor
max
min
D
Dk
D
= , (1)
where Dmin and Dmax − are respectively the minimum
and maximum values of the dose throughout the pro-
cessed product, where Dmin and Dmax are specified by a
production schedule.
A widespread method of optimization of a pro-
cessing mode is computer simulation (see, e.g., [1]).
Commonly, a regime with uniform distribution of linear
density of the scanned electron beam with conservation
its energy spectrum in the course of scanning is consid-
ered. Such assumption is true for accelerators with nar-
row spectrum. In case of the machine having wide spec-
trum, it is necessary to consider its alteration with the
angle of the beam deflection by magnetic field of the
scanner device. Under such conditions, an additional
parameter of optimization can be the form of the beam
scan.
An actual industrial process includes also the pass-
ing of the processed objects with specified velocity
through the irradiation zone. If product is packed in the
boxes (e.g., at sterilization of medical devices [2]) the
dose distribution along object edges differs sufficiently
from one obtained in their central part.
Earlier, for calculating dose distribution in the im-
movable objects, the program modules “Beam”,
“Transport” and “Dose” on the basis of the transport
code PENELOPE-2008 have been developed and vali-
dated [3]. The modules describe respectively the spatial
radiant distribution of particles in a primary beam, their
transport to an object and interaction with it, in particu-
lar, distribution of the absorbed energy in the object.
Later on, a modification of that package for calculating
dose distribution in the movable objects was carried out
[4].
In the work, the results of application of the modi-
fied code for analysis of main factors determining the
dose distribution and for optimizing, in such a way, the
regimes of the industrial processing are described.
1. EFFECT OF SCAN FORM
Study of influence of the beam scanning mode on
dose distribution at a wide beam spectrum was carried
out for the conditions corresponding to the accelerator
LU-10 of NSC KIPT [5]. The center of the scanner elec-
tromagnet is positioned at a distance of 51 cm from a
foil of the accelerator output window. A PC-driven con-
trol system of the scanner provides the possibility to set
any form and amplitude of the beam sweep [6].
In calculations, it was supposed, that the axis Z co-
incides with the accelerator axis. Axis Х is directed ver-
tically and lays in a plane of the beam scanning. The
axis Y is directed horizontally and coincides with the
direction of moving of the processed object.
Fig. 1 presents an actual spectrum of the beam used
in the simulation. The electron energy E in the maxi-
mum of the spectrum makes 9.3 МeV. A deflection an-
gle α of the electrons in the scanner device was de-
scribed by relationship
α (E) ∼Е-1. (2)
,
, r
el
. u
n.
Fig.1. Spectrum of the LU-10 beam
As a standardized object, a parallelepiped from
foamed polystyrene measuring 35 cm (thickness), 35 cm
(height), and 70 cm (length) was considered. The object
density makes 0.12 g/cm3, that corresponds its surface
density of 4.2 g/cm2. It was considered also, that the
mailto:uvarov@kipt.kharkov.ua
ISSN 1562-6016. ВАНТ. 2015. №6(100) 91
object moves through the irradiation zone with velocity
2 cm/s at an average beam current of 800 mА.
The variants with linear mode of the sweep at both
half-cycles of the beam scanning (LinLin), with linear
mode in one half-cycle and cosine in the other (LinCos),
as well as with the cosine-type sweep in the both half-
cycles (CosCos) have been considered. In addition, the
cases with direct representation of the specified spec-
trum of the electrons on the object (version A), and also
with their distributions resulting from a law of changing
the current in the scanner electromagnet with due regard
to the change of the beam distribution at its deflection
(version B) have been studied.
In the Table 1, the results of calculation of co-
ordinates of the points in the object with minimum dose
Dmin, and also the value of the dose non-uniformity fac-
tor for each variant of the beam sweep are presented. It
is seen, that in the case of double-linear sweep (LinLin)
in the both versions the dose distribution preserves it
appearance. In the variants LinCos and CosCos, it is
essentially changed as to the co-ordinates of the area
with minimum dose Dmin, and in relation of the dose
non- uniformity factor. So the variant LinCos provides
essential decrease in this factor.
Table 1
Coordinates of the point with the minimum dose and dose non-uniformity factor in the reference object
at different forms of the current in the scanner magnet
A B
LinLin
XMIN,YMIN,ZMI
N
X= 17, Y=-33.5, Z= 0.5 X=-17, Y=-33.5, Z= 0.5
DMAX/DMIN 2.88 2.87
LinCos
XMIN,YMIN,ZMI
N
X= 17, Y=-34.5, Z= 15.5 X= 17, Y=-34.5, Z= 17.5
DMAX/DMIN 2.51 2.23
CosCos
XMIN,YMIN,ZMI
N
X=-17, Y=-34.5, Z= 13.5 X= 0.0, Y=-34.5, Z= 34.5
DMAX/DMIN 2.41 2.62
2. EFFECT OF OBJECT DENSITY
Dependence of the dose distribution in a processed
object from its density was analyzed for the LinCos
sweep and conditions of the LU-10 Linac. This time as
an object a parallelepiped from expanded polystyrene
measuring 39×79×37 cm (X, Y, Z) has been considered.
Those parameters are close to the characteristics of a
phantom used for dose mapping at a procedure of the
radiator qualification [4]. In calculations, it was sup-
posed, that the object moves via the irradiation zone at a
velocity of 1.2 cm/sec, the amplitude of the beam sweep
at the accelerator output window makes 7.2 cm.
0 5 10 15 20 25 30 35
0
5
10
15
20
H, cm
D
os
e,
k
G
y
1
2
3
6 4
5
7
8
Z a
0 5 10 15 20 25 30 35
5
10
15
20
25
30
H, cm
Do
se
, k
G
y
1
2
3
4 5 6
7
8
Z b
Fig. 2. Dose distribution along object’s edge
In Figs. 2-4, the results of calculation of the dose
distribution along the three spokes crossing the object
with various surface density t (g/cm2) in different places
in parallel of the axis Z are plotted (a – one-sided irradi-
ation, b – two-sided irradiation): 1 – t=3.33; 2 – t=3.70;
3 – t=4.44; 4 – t=4.81; 5 – t=5.55; 6 – t=6.66; 7 –
t=9.25; 8 – t=11.1.
0 5 10 15 20 25 30 35
0
5
10
15
20
25
D
os
e,
k
G
y
H, cm
1
2
3
4
5
67
8
Z a
ISSN 1562-6016. ВАНТ. 2015. №6(100) 92
0 5 10 15 20 25 30 35
5
10
15
20
25
30
35
40
H, cm
D
os
e,
k
G
y
1
2
3
4
5
6
7
8
Z b
Fig. 3. Dose distribution along the central axes
of the upper object’s plane
0 5 10 15 20 25 30 35
0
5
10
15
20
25
30
H, cm
D
os
e,
k
G
y
1
2
3
4
567
8
Z a
0 5 10 15 20 25 30 35
10
15
20
25
30
35
40
45
50
55
Do
se
, k
G
y
H, cm
1
2
3
4
5 6 7
8
Z b
Fig. 4. Dose distribution along the central axis
of the object
In Fig. 5, influence of distance between the objects
moving through the irradiation zone on the dose non-
uniformity factor is shown.
t
Fig. 5. Dependence of the dose non- uniformity factor
from distance between objects
It is evident, that at an increase of the object density
and interval between the irradiated objects the non-
uniformity of the dose distribution increases.
3. EFFECT OF NON-UNIFORMITY
OF THE OBJECT DENSITY DISTRIBUTION
As a rule, a processed object is not homogeneous.
For example, at radiation sterilization of medical devic-
es each unit is packed in the individual wrap. A certain
quantity of the units is put up into a transport box,
which is exposed to irradiation. If the transport box with
volume V contains the n individual units of volume v1
each, the estimation of the effective size of in homoge-
neity can be received from the expression
1/ 3
1 .ef
Vh v
n
= −
(3)
In calculations, the four variants of the processed ob-
ject inhomogeneity were considered:
- homogeneous object;
- object with effective size of the inhomogeneity
hef=0.5 cm;
hef=1.0 cm;
hef=2.0 cm.
In every case the object corresponded a parallelepi-
ped from cellulose measuring 36×108×36 cm (XxYxZ)
with average surface density t=3.08 g/cm2. Those char-
acteristics are close to parameters of the boxes with
bandaging material sterilized at the LU-10 plant. The
actual distance between objects makes 12 cm (an inter-
val between transport containers on the plant conveyor),
at a velocity of their moving of 2.1 cm/s. In Fig. 6, the
variants of the objects surface density distribution de-
pending on the effective size of the inhomogeneity, and
also the resulting dose distributions along the central
axis of the object (Fig. 7) are shown.
0 1 2 3 4 5 6 7 8 9 10 11
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
hef = 0.5 cm
hef = 1 cm
hef = 2 cm
dN
/d
t
t, g/cm2
Fig. 6. Distribution of surface density of the object
at different size of inhomogeneity
ISSN 1562-6016. ВАНТ. 2015. №6(100) 93
0 5 10 15 20 25 30 35
0
2
4
6
8
10
12
14
16
Homogen
hef= 0.5 cm
hef= 1 cm
hef= 2 cm
Do
se
, k
G
y
Z, cm
Fig. 7. Dose distribution along the central axis of the
object, one-sided irradiation
4. BENCHMARKING
Experimental study was carried out with the use of a
rectangular phantom from heavy expanded polystyrene
(ρ =0.114 g/cm3) measuring 39×79×37 cm (X, Y, Z).
For dose mapping, the phantom contains a 3D net of the
slots for placing the dosimeters (Fig. 8). The routine
РММА dosimeters (Harwell Red 4034) calibrated on-
site with the use of reference polystyrene dosimeters
were applied in the measurements. The phantom was
two-side irradiated with the beam having the spectral
maximum 9.3 МeV (see Fig. 1) at an average beam cur-
rent of 0.8 mА and the LinCos sweep with frequency
3 Hz. A velocity of the phantom conveyance made
1.2 cm/s.
#11
#21
#12 #13
#14 #15 #16
#17 #18 #19
#22 #23
#24 #25 #26
#27 #28 #29
#31 #32 #33
#34 #35 #36
#37 #38 #39
39
0
790
37
0
1
4
3
2
5
6
.
Vconv
e-
Fig. 8. 3D-phantom with slot numbering
In Fig. 9, the data of the dose mapping are given. It
is obvious, that in point of definition of both the areas
with Dmin and Dmax, and dose non-uniformity factor, the
results received by the simulation and experimentally
are satisfactory agreed.
10 15 20 25 30 35 40
20
25
30
35
40
45
50
55
D
os
e,
k
G
y
exper
calc
Point of interest number
Fig. 9. Results of dose mapping
In the Table 2, the results of the dose measurement
with the polystyrene calorimetric dosimeters RISO [7]
at their passing with various velocity through the irradi-
ation zone, and also calculated with the use of devel-
oped sw are listed. It can be seen, that both the data dif-
fer no more, than on 7%.
Table 2
Absorbed dose in the calorimetric dosimeters at a various velocity of the conveyor
Conveyor velocity,
cm/s
Average beam
current, mА
Calculated
dose, kGy
Measured
dose, kGy
4.88 0.816 6.9 6.5
3.65 0.808 9.1 9.2
2.43 0.801 13.5 13.4
1.82 0.804 18.1 17.9
1.22 0.809 27.2 26.5
0.92 0.804 36.1 38.8
CONCLUSIONS
Developed sw provides the possibility of analysis
and optimization of a product processing mode at an
electron accelerator with the scanned beam against all
the key parameters determining the value of the ab-
sorbed dose and its spatial distribution within an irradi-
ated object.
REFERENCES
1. V.M. Lazurik, V.T. Lazurik, G. Popov, Yu. Rogov,
and Z. Zimek. Information System and Software for
Quality Control of Radiation Processing // IAEA.
Warszava. ISBN 978-83-929013-8-9, 2001.
2. Sterilization of health care products-Radiation-Part
1: Requirements for development, validation and
ISSN 1562-6016. ВАНТ. 2015. №6(100) 94
routine control of a sterilization process for medical
devices / ISO 11137-1:2006(E).
3. F. Salvat, J.M. Fernández-Varea, and J. Sempau.
PENELOPE–2008 A Code System for Monte Carlo
Simulation of Electron and Photon Transport //
OECD Nuclear Energy Agency (Issy-les-
Moulineaux) France. 2008.
4. V.I. Nikiforov, R.I. Pomatsalyuk, Yu.V. Rogov,
V.A. Shevchenko, A.Eh. Tenishev, V.L. Uvarov.
Development and Validation of Software for Simu-
lation of Product Processing Regimes at an Electron
Accelerator // Problems of Atomic Science and
Technology. Series “Nuclear Physics Investiga-
tions”. 2013, № 6, p. 156-160.
5. V.N. Boriskin, A.N. Dovbnya, V.I. Nikiforov, et al..
Development of Radiation Technologies and Tests
in “Accelerator” Sc&R Est., NSC KIPT // Problems
of Atomic Science and Technology. Series “Nuclear
Physics Investigations”. 2008, № 5, p. 150-154.
6. S.P. Karasyov, R.I. Pomatsalyuk, A.Eh. Tenishev,
V.L. Uvarov, I.N. Shlyakhov. A РC-Controlled
Beam Scanning System at the Technological Elec-
tron Linac // Problems of Atomic Science and Tech-
nology Series “Nuclear Physics Investigations”.
2006, № 3, p. 191-193.
7. Practice for Use of Calorimetric Dosimetry Systems
for Electron Dose Measurements and Routine Do-
simetry System / ISO ASTM 51631:2011 (E).
Article received 23.10.2015
ISSN 1562-6016. ВАНТ. 2015. №6(100) 95
АНАЛИЗ И ОПТИМИЗАЦИЯ РЕЖИМА ПРОМЫШЛЕННОЙ ОБРАБОТКИ ПРОДУКЦИИ
НА УСКОРИТЕЛЕ ЭЛЕКТРОНОВ
В.И. Никифоров, Р.И. Помацалюк, Ю.В. Рогов, А.Э. Тенишев, В.Л. Уваров, А.А. Захарченко
Методом моделирования исследованы факторы, определяющие неравномерность объемного распределе-
ния поглощенной дозы при обработке продукции сканирующим пучком электронов: энергетический спектр
и форма развертки пучка, плотность объекта и однородность ее распределения, а также расстояние между
объектами, перемещаемыми через зону облучения. На основе программной системы PENELOPE-2008 раз-
работан код для расчета распределения дозы и коэффициента его неоднородности с учетом характеристик
пучка, поверхностной плотности и скорости перемещения объекта. Выполнена верификация кода путем
сравнения результатов моделирования с экспериментальными данными, полученными с помощью рефе-
рентного полистирольного калориметра RISO, а также методом картографирования дозы в стандартном
фантоме.
АНАЛІЗ ТА ОПТИМІЗАЦІЯ РЕЖИМУ ПРОМИСЛОВОЇ ОБРОБКИ ПРОДУКЦІЇ
НА ПРИСКОРЮВАЧІ ЕЛЕКТРОНІВ
В.І. Нікіфоров, Р.І. Помацалюк, Ю.В. Рогов, А.Е. Тєнішев, В.Л. Уваров, О.О. Захарченко
Методом моделювання досліджені чинники, що визначають нерівномірність об'ємного розподілу погли-
нутої дози при обробці продукції скануючим пучком електронів: енергетичний спектр і форма розгортки
пучка, щільність об'єкту та однорідність її розподілу, а також відстань між об'єктами, що переміщують через
зону опромінювання. На основі програмної системи PENELOPE-2008 розроблений код для розрахунку роз-
поділу дози і коефіцієнта його неоднорідності з урахуванням характеристик пучка, поверхневої щільності і
швидкості переміщення об'єкту. Виконана верифікація коду шляхом порівняння результатів моделювання з
експериментальними даними, отриманими за допомогою референтного калориметра з полістиролу RISO, а
також методом картування дози в стандартному фантомі.
INTRODUCTION
1. EFFECT OF SCAN FORM
2. EFFECT OF OBJECT DENSITY
3. EFFECT OF NON-UNIFORMITY OF THE OBJECT DENSITY DISTRIBUTION
4. BENCHMARKING
CONCLUSIONS
|