Exciting high frequency oscillations in a coaxial transmission line with a magnetized ferrite: 2D approach

1D and 2D simulation methods and research into the formation of high frequency oscillations in a coaxial nonlinear transmission line (NLTL) partially filled with a longitudinally magnetized ferrite are presented. Dynamics and structure of the electromagnetic wave fields produced in the NLTL with a t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
Hauptverfasser: Ahn, J.W., Karelin, S.Yu, Krasovitsky, V.B., Kwon, H.O., Magda, I.I., Mukhin, V.S., Sinitsin, V.G.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/112355
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Exciting high frequency oscillations in a coaxial transmission line with a magnetized ferrite: 2D approach / J.W. Ahn, S.Yu Karelin, V.B. Krasovitsky, H.O. Kwon, I.I. Magda, V.S. Mukhin, V.G. Sinitsin // Вопросы атомной науки и техники. — 2015. — № 6. — С. 68-72. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-112355
record_format dspace
spelling irk-123456789-1123552017-01-21T03:02:49Z Exciting high frequency oscillations in a coaxial transmission line with a magnetized ferrite: 2D approach Ahn, J.W. Karelin, S.Yu Krasovitsky, V.B. Kwon, H.O. Magda, I.I. Mukhin, V.S. Sinitsin, V.G. Новые и нестандартные ускорительные технологии 1D and 2D simulation methods and research into the formation of high frequency oscillations in a coaxial nonlinear transmission line (NLTL) partially filled with a longitudinally magnetized ferrite are presented. Dynamics and structure of the electromagnetic wave fields produced in the NLTL with a transverse inhomogeneity are studied for the first time within a 2D model. Means for optimizing the electromagnetic system parameters, NLTL dimensions, and degree of the line filling, needed to increase the electric strength and maximize oscillation intensity are discussed. Представлено методику та результати 1D- і 2D-чисельного моделювання процесу формування високочастотних коливань у коаксіальній нелінійній лінії, що частково заповнена феритом, який намагнічено повздовжнім магнітним полем. За допомогою 2D-моделі вперше досліджено динаміку та структуру хвильового поля нелінійної лінії з поперечною неоднорідністю. Обговорюється оптимізація діелектричних параметрів системи, розмірів лінії та ступеня її заповнення феромагнітним матеріалом, які необхідні для підвищення електричної стійкості та отримання максимальної інтенсивності коливань. Представлена методика и результаты 1D- и 2D-численного моделирования процесса формирования высокочастотных колебаний в коаксиальной нелинейной линии, частично заполненной ферритом, который намагничен продольным магнитным полем. С помощью 2D-модели впервые исследованы динамика и структура волнового поля нелинейной линии с поперечной неоднородностью. Обсуждается оптимизация диэлектрических параметров системы, размеров линии и степени ее заполнения ферримагнитным материалом, необходимых для повышения электрической прочности и получения максимальной интенсивности колебаний. 2015 Article Exciting high frequency oscillations in a coaxial transmission line with a magnetized ferrite: 2D approach / J.W. Ahn, S.Yu Karelin, V.B. Krasovitsky, H.O. Kwon, I.I. Magda, V.S. Mukhin, V.G. Sinitsin // Вопросы атомной науки и техники. — 2015. — № 6. — С. 68-72. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS: 41.20.jb, 75.30.Cr, 75.50.Bb http://dspace.nbuv.gov.ua/handle/123456789/112355 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Новые и нестандартные ускорительные технологии
Новые и нестандартные ускорительные технологии
spellingShingle Новые и нестандартные ускорительные технологии
Новые и нестандартные ускорительные технологии
Ahn, J.W.
Karelin, S.Yu
Krasovitsky, V.B.
Kwon, H.O.
Magda, I.I.
Mukhin, V.S.
Sinitsin, V.G.
Exciting high frequency oscillations in a coaxial transmission line with a magnetized ferrite: 2D approach
Вопросы атомной науки и техники
description 1D and 2D simulation methods and research into the formation of high frequency oscillations in a coaxial nonlinear transmission line (NLTL) partially filled with a longitudinally magnetized ferrite are presented. Dynamics and structure of the electromagnetic wave fields produced in the NLTL with a transverse inhomogeneity are studied for the first time within a 2D model. Means for optimizing the electromagnetic system parameters, NLTL dimensions, and degree of the line filling, needed to increase the electric strength and maximize oscillation intensity are discussed.
format Article
author Ahn, J.W.
Karelin, S.Yu
Krasovitsky, V.B.
Kwon, H.O.
Magda, I.I.
Mukhin, V.S.
Sinitsin, V.G.
author_facet Ahn, J.W.
Karelin, S.Yu
Krasovitsky, V.B.
Kwon, H.O.
Magda, I.I.
Mukhin, V.S.
Sinitsin, V.G.
author_sort Ahn, J.W.
title Exciting high frequency oscillations in a coaxial transmission line with a magnetized ferrite: 2D approach
title_short Exciting high frequency oscillations in a coaxial transmission line with a magnetized ferrite: 2D approach
title_full Exciting high frequency oscillations in a coaxial transmission line with a magnetized ferrite: 2D approach
title_fullStr Exciting high frequency oscillations in a coaxial transmission line with a magnetized ferrite: 2D approach
title_full_unstemmed Exciting high frequency oscillations in a coaxial transmission line with a magnetized ferrite: 2D approach
title_sort exciting high frequency oscillations in a coaxial transmission line with a magnetized ferrite: 2d approach
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2015
topic_facet Новые и нестандартные ускорительные технологии
url http://dspace.nbuv.gov.ua/handle/123456789/112355
citation_txt Exciting high frequency oscillations in a coaxial transmission line with a magnetized ferrite: 2D approach / J.W. Ahn, S.Yu Karelin, V.B. Krasovitsky, H.O. Kwon, I.I. Magda, V.S. Mukhin, V.G. Sinitsin // Вопросы атомной науки и техники. — 2015. — № 6. — С. 68-72. — Бібліогр.: 7 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT ahnjw excitinghighfrequencyoscillationsinacoaxialtransmissionlinewithamagnetizedferrite2dapproach
AT karelinsyu excitinghighfrequencyoscillationsinacoaxialtransmissionlinewithamagnetizedferrite2dapproach
AT krasovitskyvb excitinghighfrequencyoscillationsinacoaxialtransmissionlinewithamagnetizedferrite2dapproach
AT kwonho excitinghighfrequencyoscillationsinacoaxialtransmissionlinewithamagnetizedferrite2dapproach
AT magdaii excitinghighfrequencyoscillationsinacoaxialtransmissionlinewithamagnetizedferrite2dapproach
AT mukhinvs excitinghighfrequencyoscillationsinacoaxialtransmissionlinewithamagnetizedferrite2dapproach
AT sinitsinvg excitinghighfrequencyoscillationsinacoaxialtransmissionlinewithamagnetizedferrite2dapproach
first_indexed 2025-07-08T03:47:48Z
last_indexed 2025-07-08T03:47:48Z
_version_ 1837049020754690048
fulltext ISSN 1562-6016. ВАНТ. 2015. №6(100) 68 EXCITING HIGH FREQUENCY OSCILLATIONS IN A COAXIAL TRANSMISSION LINE WITH A MAGNETIZED FERRITE: 2D APPROACH J.W. Ahn1, S.Yu Karelin2, V.B. Krasovitsky2, H.O. Kwon1, I.I. Magda2, V.S. Mukhin2, V.G. Sinitsin2 1Hanwha Corporation, Gumi, Kyungbuk, Korea; 2National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: magda@kipt.kharkov.ua 1D and 2D simulation methods and research into the formation of high frequency oscillations in a coaxial nonlinear transmission line (NLTL) partially filled with a longitudinally magnetized ferrite are presented. Dynamics and structure of the electromagnetic wave fields produced in the NLTL with a transverse inhomogeneity are studied for the first time within a 2D model. Means for optimizing the electromagnetic system parameters, NLTL dimensions, and degree of the line filling, needed to increase the electric strength and maximize oscillation intensity are discussed. PACS: 41.20.jb, 75.30.Cr, 75.50.Bb INTRODUCTION Since 1960s, nonlinear phenomena arising when an electrical current impulse travels through the transmis- sion line partially filled with ferromagnetic media, have been studied intensely - initially as a way to sharpen the pulse rise-time and create electromagnetic shock waves [1, 2]. Today, the attention of researchers is mostly fo- cused to direct energy conversion from a short video- pulse to high-frequency oscillations, which can be ex- tracted from the structure in the form of intense HF ra- diation [3 - 6]. This work is devoted to numerical study of the process of formation HF oscillations in the NLTL with a ferrite based on 1D and 2D theoretical models describing the phenomenon. 1. EXPERIMENT The theoretical investigation was preceded by the experiments on inducing the HF oscillations in a NLTL partially filled with ferrite, which is in a state close to full magnetization [6]. Fig. 1. Schematics of the analyzed system Fig. 2. The experimental results The 200VNP-type NiZn ferrite was selected as the nonlinear material, which according to [2], provided the best results on formation the HF oscillations. The ana- lyzed system (Fig. 1) consisted of the following ele- ments: (i) two matching coaxial lines, TL1 and TL2, filled with a liquid dielectric (ε=2.25, D3/D1=26 mm/12 mm), and (ii) coaxial NLTL (D3/D1 = 26 mm/12mm, length l = 850 mm), including the coaxi- al layers of ferrite (ε= 10, D2/D1 = 20 mm/12 mm), and liquid dielectric (ε= 2.25, D3/D2 = 26 mm/20 mm). At H0=110 kA/m and U0=100 kV the HF oscilla- tions with the frequency of 1.58 GHz and amplitude efficiency up to 27% were obtained (Fig. 2). 2. 1D MODEL The analyzed system (Fig. 1) can be represented most simply in the form of a 1D model described else- where earlier [2, 3]. In this case, the propagation of the current impulse and related electromagnetic wave along the transmission line with a magnetic nonlinearity is described by telegraph equations [1, 2], which can be reduced to a second order equation for the current I: ( )22 2 2 1 , I K MI C I ILC RC z t C z z t ϕ∂ + ⋅∂ ∂ ∂ ∂ = + − ∂ ∂ ∂ ∂ ∂ (1) where C and R are the specific capacitance and re- sistance of the line, L is the specific inductance of the line without regard to magnetic properties, K = μ0(D2- D1)/2l, μ0 is the magnetic permeability of the vacuum, Mφ is the azimuthal component of the magnetization, D2, D1 and l are the external and internal diameters and length of the ferrite. The external longitudinal magnetic field Н0 turns the ferrite in a saturated state with the magnetization Ms. In these circumstances, the individual electron spins be- have as single units, participating in creation of a com- mon axial magnetic flux. The state of the ferrite dynam- ics can be described by one variable – the magnetic moment vector M, while the azimuthal magnetic field of the high voltage impulse does not change its amplitude, but the direction only, |M|=Ms=const. The vector M dynamics dependent on the magnetic field H is de- scribed by Landau-Lifshitz equation [ ] [ ]0 0 s d dt M γµγµ α  = × − × ×  M M H M M H , (2) where γ is the electron gyromagnetic ratio, and α is the phenomenological relaxation factor. The vector of the magnetization has the form mailto:magda@kipt.kharkov.ua ISSN 1562-6016. ВАНТ. 2015. №6(100) 69 z M M M ρ ϕ    =      M , and the initial states of its components are: Mρ=Mφ=0, Mz=Ms. The magnetization moment at saturation Ms depends on properties of used ferrite. The magnetic field vector H has the components: Hρ=(Hdm)ρ , Hφ=qI, Hz=H0+(Hdm)z. Here qI is the azi- muthal magnetic field of the high voltage pulse, where the form-factor q, according to [3] and assuming the absence of layered structure of the NLTL is defined as follows 1 eff q dπ= , where ( ) 2 2 1 1 / lneff Dd D D D = − . In this case, the radial effective magnetic field (Hdm)ρ= -Mρ, (3) depends on the ferrite shape, while the axial magnetic field with the magnetizing factor (Hdm)z=-k(Mz-Ms), (4) takes into account the magnetic field of the solenoidal currents induced in the walls of the waveguide [1, 3] by means of the coupling coefficient 0<k<1. A method of numerical calculation of the presented model is proposed in [2], which is based on splitting the transmission line into a number of sections, with insert- ed voltage sources which correspond to the contribution of the magnetic subsystem (2). Unlike [2], this study presents a direct integration of the telegraph equation (1) together with equation (2) by the Runge-Kutta method. In addition, the present case takes into account not only the line with ferrite, but the matching lines TL1 and TL2 also. This allows to estimating the matching effects between the lines. Thus, for combined solution of the equations (1) and (2) a grid is formed with the dimensions n×N, where n=l/Δz, N=T/Δt, N is the calculation time, Δz and Δt are the lengths of discretization steps in space and time, respectively. Each cell of the grid is associated with a current of value Ii,j and magnetic moment Mi,j with three components, (Mρ)i,j, (Mφi,j and (Mz)i,j, i=1,2,...n, j=1,2...N. At each solution step the computation is performed in three stages: (i) determining the net value of IS=I i+1,j+K⋅(Mφ)i+1,j (whose individual components are not known yet) for the next step, through numerical solution of the tele- graph equation (1) by the finite difference method; (ii) determining the magnetic moment for the next time-step by means of numerical solution of the Lan- dau-Lifshitz equation (2) by the Runge-Kutta method; (iii) determining the current for the next time-step Ii+1,j=IS-K⋅(Mφ)i+1,j. The results of numerical simulation are shown in Figs. 3 and 4. Fig. 3 demonstrates an increase of the oscillation frequency with the input voltage, and de- crease with the longitudinal magnetizing field. This is in agreement with the experimental data [2], suggesting a qualitative correctness of the 1D model in describing the phenomenon under investigation. At the same time, the oscillation frequency obtained in the numerical experi- ment, which ignores the layered structure of the system, is substantially higher than in [2] and in our experiments [6] (see Fig. 4). Fig. 3. 1D model: dependence of the oscillation frequency (1), and amplitude (2) on the input voltage for H0=100 kA/m (a), and on the longitudinal magnetizing field for Hφ=110 kA/m (b) Fig. 4. Comparison of the output signals obtained in the experiment, and in 1D (a) and 2D (b) simulations 3. 2D MODEL To create a 2D model of the system, the full set of Maxwell’s equations for a cylindrical coordinate system (z,ρ,φ) is used: z is the distance along the coaxial struc- ture, ρ is the distance from the axis of symmetry of the system, φ is the azimuthal angle with respect to the axis of symmetry. Due to homogeneity of the system and homogeneity of the initial and boundary conditions on angle φ) (the system is excited by a TEM wave), it can be accepted d/dφ)≡ 0, thus going over to a two- dimensional model. Then the set of Maxwell equations splits into two independent sets, ( ) ( ) ( ) ( ) 0 0 0 1 ; 1 1 ; . z z E H t z HE t H M EE t z ρ φ φ φ φ ρ  ∂ ε ∂ ⋅ = − η ∂ ∂   ∂ ρ∂ ε ⋅ =  η ∂ ρ ∂ρ     ∂ + ∂∂η = − ∂ ∂ρ ∂ (5) ISSN 1562-6016. ВАНТ. 2015. №6(100) 70 ( ) ( ) ( ) ( ) 0 0 0 ; 1 ; 1 , z z z H M E t z EH M t E H H t z ρ ρ φ φ φ ρ  ∂ + ∂η =  ∂ ∂   ∂ ρ∂ +η = −   ∂ ρ ∂ρ     ∂ ε ∂ ∂ ⋅ = −η ∂ ∂ ∂ρ (6) where η0 is the free space impedance. Fig. 5. 2D model: dependence of the oscillation fre- quency (1) and amplitude span (2) on the input voltage, for H0=100 kA/m (a), and the longitudinal bias magnet- ic field for Hφ=110 kA/m (b) Fig. 6. Dependences of (a) the output waveform, and (b) of the oscillation frequency (1) and amplitude (2) on the outer diameter of the NLTL The system of equations (5) describes a TE wave that is more general case of a TEM wave propagating in the coaxial structure. The equation set (6) describes a TM wave, which is not formed in the coaxial structure when it is excited by a TEM wave. But in the investi- gated system the TM wave can be formed as a result of interaction with the magnetic sub-system governed by equation (2). The numerical calculation of equations (5) and (6) is carried out in accordance with the methods established in [7], while with regard to the interaction between the electromagnetic fields and magnetic sub- system (2) we use the method described in the previous section. The results of numerical simulation are shown in Figs. 5 and 6. As can be seen, when 2D modeling is used the shape of the output impulse corresponds better to the experimental waveform than in the case of 1D modeling. In particular, the oscillation frequency ob- tained in the 2D model (2.05 GHz) is much closer to the experimental result (1.6 GHz) than to the 1D one (8.5 GHz). 4. DISCUSSION OF THE RESULTS Based on the described 2D numerical study, several issues of practical interest can be considered. (i) Optimizing the filling factor of a coaxial NLTL with ferrite. To study this effect, a series of numerical experiments with various outer diameters D3 of the sys- tem (see Fig. 1) were produced. Fig. 6 indicates the ex- istence of a maximum oscillation amplitude for a certain D3. In our case, it is observed for D3=28 mm, corre- sponding to the filling factor of the ferrite in the wave- guide cross-section equal to 0.4. It is significant that when the filling factor is close to unity the oscillation frequency goes high and corresponds roughly to the results of the 1D model. However when the filling fac- tor decreases the oscillation frequency also rapidly de- creases. This suggests that the frequency of HF oscilla- tions in a multilayered structure of the NLTL depends on the transverse distribution of the electromagnetic field that cannot be considered in a 1D model. (ii) The NLTL transverse dimensions. To increase the power of HF oscillations the input voltage U0 should be increased. Respectively, to provide a higher electrical strength it is necessary to increase the cross- section of the coaxial system. However, increasing the transverse dimensions necessarily leads to dominance of the effects specific for the layered waveguide structure, associated with the transformation of TEM wave, and, as the result, distortion of the output pulse. To explore this issue, a series of numerical experiments with a pro- portional variation of the input voltage U=sU0 and transverse dimensions of the system Di=sDi 0, where s is a variable scale factor. Fig. 7,a presents a series of the output waveforms, obtained for the excitation signal of the amplitude U0 = 100 kV and pulse width at half max- imum tp0.5 = 6 ns. It can be seen, the reduced span ΔU/s of the oscillation amplitude increases when s goes up to the value 3, i.e. the oscillation excitation efficiency aris- es. It should be noted that the growth of s reduces the oscillation frequency (an effect that is absent in the 1D model) as well as the number of the observed oscillation periods since the current pulse width is limited. In fact, ISSN 1562-6016. ВАНТ. 2015. №6(100) 71 since s=3 (for tp 0.5 = 6 ns) the oscillations practically cease, such that no more than 1or 2 periods can be ob- served (see Fig. 7). With greater widths of the current impulse the oscillations are observed at lower frequen- cies. Fig. 7. The output impulse envelope vs s (a). Dependence of the oscillation frequency (1) and reduced amplitude span (2) on the scale factor s (b) Fig. 8. Dependence of the oscillation frequency (1), and amplitude span (2) on the insulation (a) and ferrite (b) permittivity (iii) The effect of dielectric characteristics of the NLTL media on the excitation efficiency of oscillations. A series of numerical experiments with variation of the permittivity of the liquid dielectric εd and ferrite materi- al εf were performed. These results are shown in Fig. 8. As can be seen, when εf decreases and εd increases, the oscillation frequency goes up, while the oscillation am- plitude decreases. Thus, to provide for an efficient for- mation of HF oscillations the permittivity of the ferrite should significantly exceed the value of the permittivity of the insulating dielectric. By way of example, for a coaxial NLTL with di- mensions D3/D1 = 2.2, excited by an input pulse of amplitude 100 kV and a 6 ns width the following condi- tions for effective excitation of oscillations can be ob- tained: - the factor of filling the line’s cross-section with the ferrite material should be about 0.4; - the permittivity of an insulating dielectric should be at least three times lower than the permittivity of the ferrite, εf > 3εd. CONCLUSIONS A 2D simulation model has been used for the first time to describe the dynamics of the shock wave and the HF oscillations excited by a current impulse traveling along the nonlinear coaxial line partially filled with a longitudinally magnetized ferrite. The 2D model has major advantages over the 1D model and agrees much better with experimental results. The computations based on the 2D model allow formulating conditions for an effective formation of HF oscillations in the NLTL. ACKNOWLEDGEMENT The authors are grateful to Dr. V. Pazynin for con- sultations on the numerical technique for solving the Maxwell equations. REFERENCES 1. I.G. Katayev. Electromagnetic shock waves. Lon- don: Iliffe Books Ltd, 1966, 152 p. 2. J.E. Dolan. J. Phys. Simulation of shock waves in ferrite-loaded coaxial transmission lines with axial bias // D: Appl. Phys. 1999, v. 32, p. 1826-1831. 3. J.W.B. Bragg, J. Dickens, A. Neuber, K. Long // Proc. of 2011 COMSOL Conf. Boston, Burlington, MA, Feb. 2011. 4. V.P. Gubanov, A.V. Gunin, O.B. Kowalchuk, et al. Efficient conversion of the energy of high-voltage pulses into high frequency oscillations, based on a transmission line with a saturated ferrite // Pisma ZhTF. 2009, v. 35, issue 13, p. 81-87 (in Russian). 5. D.V. Reale. Coaxial Ferrimagnetic Based Gyro- magnetic Nonlinear Transmission Lines as Compact High Power Microwave Sources. A dissertation in electrical engineering. Texas Tech University, Dec. 2013, 81 p. 6. S.Y. Karelin, V.B. Krasovitsky, I.I. Magda, V.S. Mukhin, and V.G. Sinitsin. An experimental study of quasi- monochromatic oscillations in a ferrite-filled trans- mission line // Proc. of 25th Int. Conf. on Microwave Technology and Telecommunications (CriMiCo 2015), Sevastopol, Crimea, Sept. 2015, p. 785-786. 7. A. Taflove, S.C. Hagness. Computinal Electrody- namics: The Finite-Difference Time-Domain Meth- od. 2nd Edition. Boston-London: Artech House, 2000, 852 p. Article received 20.10.2015 ISSN 1562-6016. ВАНТ. 2015. №6(100) 72 ВОЗБУЖДЕНИЕ ВЫСОКОЧАСТОТНЫХ ОСЦИЛЛЯЦИЙ В КОАКСИАЛЬНОЙ ЛИНИИ С НАМАГНИЧЕННЫМ ФЕРРИТОМ. 2D-МОДЕЛЬ Ч.В. Ан, С.Ю. Карелин, В.Б. Красовицкий, Х.О. Куон, И.И. Магда, В.С. Мухин, В.Г. Синицын Представлена методика и результаты 1D- и 2D-численного моделирования процесса формирования вы- сокочастотных колебаний в коаксиальной нелинейной линии, частично заполненной ферритом, который намагничен продольным магнитным полем. С помощью 2D-модели впервые исследованы динамика и структура волнового поля нелинейной линии с поперечной неоднородностью. Обсуждается оптимизация диэлектрических параметров системы, размеров линии и степени ее заполнения ферримагнитным материа- лом, необходимых для повышения электрической прочности и получения максимальной интенсивности ко- лебаний. ЗБУДЖЕННЯ ВИСОКОЧАСТОТНИХ ОСЦИЛЯЦІЙ В КОАКСІАЛЬНІЙ ЛІНІЇ З НАМАГНІЧЕНИМ ФЕРИТОМ. 2D-МОДЕЛЬ Ч.В. Ан, С.Ю. Карелін, В.Б. Красовицький, Х.О. Куон, І.І. Магда, В.С. Мухін, В.Г. Сініцин Представлено методику та результати 1D- і 2D-чисельного моделювання процесу формування високоча- стотних коливань у коаксіальній нелінійній лінії, що частково заповнена феритом, який намагнічено повздо- вжнім магнітним полем. За допомогою 2D-моделі вперше досліджено динаміку та структуру хвильового поля нелінійної лінії з поперечною неоднорідністю. Обговорюється оптимізація діелектричних параметрів системи, розмірів лінії та ступеня її заповнення феромагнітним матеріалом, які необхідні для підвищення електричної стійкості та отримання максимальної інтенсивності коливань.