2025-02-22T23:39:04-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-112639%22&qt=morelikethis&rows=5
2025-02-22T23:39:04-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-112639%22&qt=morelikethis&rows=5
2025-02-22T23:39:04-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T23:39:04-05:00 DEBUG: Deserialized SOLR response

Эффективное поле и фазовый переход металл—диэлектрик в модели Хаббарда

В рамках модели Хаббарда с эффективным самосогласованным полем представлен возможный механизм скачкообразного фазового перехода металл–диэлектрик для полузаполненной зоны. Диаграммным методом проведено детальное исследование известного приближения Хаббард-I, а также учтены корреляционные поправки пр...

Full description

Saved in:
Bibliographic Details
Main Author: Зубов, Э.Е.
Format: Article
Language:Russian
Published: Інститут металофізики ім. Г.В. Курдюмова НАН України 2016
Series:Металлофизика и новейшие технологии
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/112639
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:В рамках модели Хаббарда с эффективным самосогласованным полем представлен возможный механизм скачкообразного фазового перехода металл–диэлектрик для полузаполненной зоны. Диаграммным методом проведено детальное исследование известного приближения Хаббард-I, а также учтены корреляционные поправки при минимальном числе параметров самосогласования. Установлены характерные параметры порядка, свойственные только металлическому состоянию или диэлектрическому. На основе анализа электронной спектральной плотности определены положения уровня химического потенциала и критическое значение величины энергии кулоновского отталкивания U~ в единицах ширины зоны, когда происходит фазовый переход металл–диэлектрик. Оценки величин внутренней энергии в случае полузаполненной зоны показали, что для U~<2,1 более устойчивым является состояние металла, тогда как при U~>2,1 устойчиво состояние диэлектрика, но только при предельном переходе по электронному допированию. Поэтому уровень химпотенциала для диэлектрика лежит у нижнего края верхней хаббардовской зоны, где спектральная плотность равна нулю. Это даёт нулевую проводимость. Конечное электронное допирование или дырочное обусловливает металлическое состояние с уровнем Ферми внутри верхней зоны или допированное диэлектрическое состояние с уровнем Ферми внутри нижней зоны соответственно. Это приводит к скачкообразному росту проводимости при фазовом переходе металл–диэлектрик.