Study of the Effect of Different Industrial Coating with Microscale Thickness on the CK45 Steel by Experimental and Finite Element Methods

This article is aimed at analyzing the effects of industrial coatings of hardened chromium, trim chromium, hardened nickel and warm-galvanization with a thin structure and dimensions in micron scale, on fatigue endurance limit of components. In order to do this, using the plating process and t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Kashvzadeh, K.R., Arghavan, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2013
Назва видання:Проблемы прочности
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/112668
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Study of the Effect of Different Industrial Coating with Microscale Thickness on the CK45 Steel by Experimental and Finite Element Methods / K.R. Kashvzadeh, A. Arghavan // Проблемы прочности. — 2013. — № 6. — С. 152-163. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:This article is aimed at analyzing the effects of industrial coatings of hardened chromium, trim chromium, hardened nickel and warm-galvanization with a thin structure and dimensions in micron scale, on fatigue endurance limit of components. In order to do this, using the plating process and the analyzed coatings with the thickness of 13 and 19 m under the operation conditions, the components of CK45 steel were plated. An attempt was made to analyze the fatigue of components by modeling the interface phase between the base metal and coating more accurately, using the linear spring elements. The S–N curves obtained via the proposed finite element model (including 3 different phases) and other finite element models in which the shell element was used to model the intermediate phase, are compared to the experimental results. The findings indicate that, considering the difference between the S–N curves constructed via the present finite element model and via test results, this model is improved in comparison to the earlier one, and yields more reliable results. Taking into account the environmental and operating conditions of components, the galvanized coating is the most appropriate among low-thickness coatings, but with significant increase in coating thickness, the best choice becomes hardened chromium coating. Increase in coating thickness by 6 m reduces the fatigue limit by 14.96 and 4.37% for galvanized and hardened chromium coatings, respectively.