Obtaining the Local Extremum in the Problem of Covering the Fields by the Circles of Variable Radius
The problem of covering the area of the variable radius circle is considered. The mathematical model of the coating is built. A new coverage criterion is offered, based on which the range of permissible solutions of the problem is analytically described. Based on the analysis of the model properties...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України
2016
|
Назва видання: | Управляющие системы и машины |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/113323 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Obtaining the Local Extremum in the Problem of Covering the Fields by the Circles of Variable Radius / V.V. Komyak, V.M. Komyak, A.V. Pankratov, A.Yu. Prikhodko // Управляющие системы и машины. — 2016. — № 2. — С. 22-27. — Бібліогр.: 14 назв. — англ. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The problem of covering the area of the variable radius circle is considered. The mathematical model of the coating is built. A new coverage criterion is offered, based on which the range of permissible solutions of the problem is analytically described. Based on the analysis of the model properties, it is shown that the solution of the problem can be reduced to the nonlinear programming sequence solution of problems. |
---|