Метод семплювання для боротьби з ефектом зникнення градієнтів у рекурентних нейромережах

Ефект зникнення градієнтів є спільною проблемою навчання рекурентних і глибоких нейромереж. У статті розроблено метод для оцінки внеску кожного прикладу з навчальної вибірки у градієнт цільової функції навчання. Запропоновано новий універсальний метод, який дозволяє утримувати норму градієнтів у за...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Чернодуб, А.М., Новицький, Д.В.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут проблем математичних машин і систем НАН України 2016
Назва видання:Математичні машини і системи
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/113598
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Метод семплювання для боротьби з ефектом зникнення градієнтів у рекурентних нейромережах / А.М. Чернодуб, Д.В. Новицький // Математичні машини і системи. — 2016. — № 2. — С. 30-43. — Бібліогр.: 26 назв. — укр.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Ефект зникнення градієнтів є спільною проблемою навчання рекурентних і глибоких нейромереж. У статті розроблено метод для оцінки внеску кожного прикладу з навчальної вибірки у градієнт цільової функції навчання. Запропоновано новий універсальний метод, який дозволяє утримувати норму градієнтів у задовільних межах. Для експериментальної перевірки нашого підходу використано спеціальні синтетичні бенчмарки для тестування нейромереж на здатність виявляти довготривалі залежності. Навчена з використанням даного методу рекурентна нейромережа з одиничними затримками може знаходити залежності між подіями в часових послідовностях довжиною до 100 і більше тактів.