Теорія крайових задач для операторно-диференціальних рівнянь (за матеріалами наукового повідомлення на засіданні Президії НАН України 9 листопада 2016 року)
Доповідь присвячено дослідженню крайових задач для операторно-диференціальних рівнянь у просторах Фреше, Банаха та Гільберта. Розглянуто моделі квантової механіки для операторного рівняння Шредінгера в просторі Гільберта, які пов’язані з теорією необоротних процесів. Одним із застосувань розглянут...
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2017
|
Назва видання: | Вісник НАН України |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/114397 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Теорія крайових задач для операторно-диференціальних рівнянь (за матеріалами наукового повідомлення на засіданні Президії НАН України 9 листопада 2016 року) / О.О. Покутний // Вісник Національної академії наук України. — 2017. — № 1. — С. 89-97. — Бібліогр.: 13 назв. — укр. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Доповідь присвячено дослідженню крайових задач для операторно-диференціальних рівнянь у просторах Фреше, Банаха та Гільберта. Розглянуто моделі квантової механіки для операторного рівняння Шредінгера в
просторі Гільберта, які пов’язані з теорією необоротних процесів. Одним
із застосувань розглянутої проблеми є нелінійна періодична крайова задача для рівняння Ван дер Поля в просторі Гільберта. Така модель широко використовується в біології, хімії, для побудови нейронних моделей тощо.
Отримано необхідні та достатні умови розв’язності відповідних крайових задач. Для лінійних та нелінійних задач знайдено множини розв’язків та запропоновано ітеративні алгоритми побудови відповідних розв’язків. |
---|