Comparison of neutron-physical characteristics of uranium target of assembly "quinta" irradiated by relativistic deuterons and ¹²C nuclei

At the present time disposal of spent nuclear fuel and fuel supply problem are two main reasons preventing wide distribution of nuclear power. One of the ways to solve this problem is using Nuclear Relativistic Technologies aimed at forming of maximum hard neutron spectrum in natural or depleted mas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
Hauptverfasser: Artiushenko, M.Yu., Baldin, A.A., Berlev, A.I., Chilap, V.V., Dalkhajav, O., Sotnikov, V.V., Tyutyunnikov, S.I., Voronko, V.A., Zhadan, A.A.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2016
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/115364
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Comparison of neutron-physical characteristics of uranium target of assembly "quinta" irradiated by relativistic deuterons and ¹²C nuclei / M.Yu. Artiushenko, A.A. Baldin, A.I. Berlev, V.V. Chilap, O. Dalkhajav, V.V. Sotnikov, S.I. Tyutyunnikov, V.A. Voronko, A.A. Zhadan // Вопросы атомной науки и техники. — 2016. — № 3. — С. 74-78. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-115364
record_format dspace
spelling irk-123456789-1153642017-04-04T03:02:33Z Comparison of neutron-physical characteristics of uranium target of assembly "quinta" irradiated by relativistic deuterons and ¹²C nuclei Artiushenko, M.Yu. Baldin, A.A. Berlev, A.I. Chilap, V.V. Dalkhajav, O. Sotnikov, V.V. Tyutyunnikov, S.I. Voronko, V.A. Zhadan, A.A. Применение ускорителей в радиационных технологиях At the present time disposal of spent nuclear fuel and fuel supply problem are two main reasons preventing wide distribution of nuclear power. One of the ways to solve this problem is using Nuclear Relativistic Technologies aimed at forming of maximum hard neutron spectrum in natural or depleted massive uranium targets irradiated by high energy (2…10 GeV) beams of relativistic particles. This paper describes the neutron generation in massive natural uranium target (assembly "QUINTA", mU ~ 500 kg) irradiated by beams of relativistic deuterons and 12C ions with energies of 2 and 4 AGeV at the accelerator Nuclotron (JINR, Dubna). The reactions natU(n,f), ²³⁸U(n,γ), and ⁵⁹Co(n,x) were investigated using activation technique. Comparison of obtained experimental results in dependence on energy of incident beam and type of particles was carried out. Проблема утилизации отработанного ядерного топлива и ограниченность запасов сырья на сегодняшний день являются двумя основными причинами, препятствующими широкомасштабному распространению атомной энергетики. Одним из путей решения данных проблем является использование ядерных релятивистских технологий, которые предлагают использование максимально жѐсткого спектра нейтронов в массивных мишенях из природного или обеднѐнного урана, облучаемых пучками релятивистских частиц высоких энергий (2…10 ГэВ). Данная работа описывает исследование генерации нейтронов в протяжѐнной мишени из природного урана (установка "КВИНТА", mU ~ 500 кг), облучаемой пучками релятивистских дейтронов и ядер ¹²C с энергиями 2 и 4 ГэВ/нукл. на ускорителе «Нуклотрон» (ОИЯИ, Дубна). С помощью активационной методики были исследованы скорости реакций: natU(n,f), ²³⁸U(n,γ), ⁵⁹Co(n,x). Проведено сравнение полученных экспериментальных результатов в зависимости от энергии и вида налетающих частиц. Проблема утилізації відпрацьованого ядерного палива та обмеженість запасів сировини на сьогоднішній день є двома основними причинами, що перешкоджають широкомасштабному поширенню атомної енергетики. Одним із шляхів вирішення даних проблем є використання ядерних релятивістських технологій, які пропонують використання максимально жорсткого спектра нейтронів у масивних мішенях з природного або збідненого урану, що опромінюються пучками релятивістських частинок високих енергій (2…10 ГеВ). Дана робота описує дослідження генерації нейтронів у протяжній мішені з природного урану (установка "КВІНТА", mU ~ 500 кг), яка опромінювалася пучками релятивістських дейтронів та ядер ¹²C з енергіями 2 та 4 ГеВ/нукл. на прискорювачі «Нуклотрон» (ОІЯД, Дубна). За допомогою активаційної методики були досліджені швидкості реакцій: natU(n,f), ²³⁸U(n,γ), ⁵⁹Co(n,x). Проведено порівняння отриманих експериментальних результатів залежно від енергії та виду налітаючих частинок 2016 Article Comparison of neutron-physical characteristics of uranium target of assembly "quinta" irradiated by relativistic deuterons and ¹²C nuclei / M.Yu. Artiushenko, A.A. Baldin, A.I. Berlev, V.V. Chilap, O. Dalkhajav, V.V. Sotnikov, S.I. Tyutyunnikov, V.A. Voronko, A.A. Zhadan // Вопросы атомной науки и техники. — 2016. — № 3. — С. 74-78. — Бібліогр.: 12 назв. — англ. 1562-6016 PACS: 28.41. Kw, 28.50. Ft http://dspace.nbuv.gov.ua/handle/123456789/115364 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Применение ускорителей в радиационных технологиях
Применение ускорителей в радиационных технологиях
spellingShingle Применение ускорителей в радиационных технологиях
Применение ускорителей в радиационных технологиях
Artiushenko, M.Yu.
Baldin, A.A.
Berlev, A.I.
Chilap, V.V.
Dalkhajav, O.
Sotnikov, V.V.
Tyutyunnikov, S.I.
Voronko, V.A.
Zhadan, A.A.
Comparison of neutron-physical characteristics of uranium target of assembly "quinta" irradiated by relativistic deuterons and ¹²C nuclei
Вопросы атомной науки и техники
description At the present time disposal of spent nuclear fuel and fuel supply problem are two main reasons preventing wide distribution of nuclear power. One of the ways to solve this problem is using Nuclear Relativistic Technologies aimed at forming of maximum hard neutron spectrum in natural or depleted massive uranium targets irradiated by high energy (2…10 GeV) beams of relativistic particles. This paper describes the neutron generation in massive natural uranium target (assembly "QUINTA", mU ~ 500 kg) irradiated by beams of relativistic deuterons and 12C ions with energies of 2 and 4 AGeV at the accelerator Nuclotron (JINR, Dubna). The reactions natU(n,f), ²³⁸U(n,γ), and ⁵⁹Co(n,x) were investigated using activation technique. Comparison of obtained experimental results in dependence on energy of incident beam and type of particles was carried out.
format Article
author Artiushenko, M.Yu.
Baldin, A.A.
Berlev, A.I.
Chilap, V.V.
Dalkhajav, O.
Sotnikov, V.V.
Tyutyunnikov, S.I.
Voronko, V.A.
Zhadan, A.A.
author_facet Artiushenko, M.Yu.
Baldin, A.A.
Berlev, A.I.
Chilap, V.V.
Dalkhajav, O.
Sotnikov, V.V.
Tyutyunnikov, S.I.
Voronko, V.A.
Zhadan, A.A.
author_sort Artiushenko, M.Yu.
title Comparison of neutron-physical characteristics of uranium target of assembly "quinta" irradiated by relativistic deuterons and ¹²C nuclei
title_short Comparison of neutron-physical characteristics of uranium target of assembly "quinta" irradiated by relativistic deuterons and ¹²C nuclei
title_full Comparison of neutron-physical characteristics of uranium target of assembly "quinta" irradiated by relativistic deuterons and ¹²C nuclei
title_fullStr Comparison of neutron-physical characteristics of uranium target of assembly "quinta" irradiated by relativistic deuterons and ¹²C nuclei
title_full_unstemmed Comparison of neutron-physical characteristics of uranium target of assembly "quinta" irradiated by relativistic deuterons and ¹²C nuclei
title_sort comparison of neutron-physical characteristics of uranium target of assembly "quinta" irradiated by relativistic deuterons and ¹²c nuclei
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2016
topic_facet Применение ускорителей в радиационных технологиях
url http://dspace.nbuv.gov.ua/handle/123456789/115364
citation_txt Comparison of neutron-physical characteristics of uranium target of assembly "quinta" irradiated by relativistic deuterons and ¹²C nuclei / M.Yu. Artiushenko, A.A. Baldin, A.I. Berlev, V.V. Chilap, O. Dalkhajav, V.V. Sotnikov, S.I. Tyutyunnikov, V.A. Voronko, A.A. Zhadan // Вопросы атомной науки и техники. — 2016. — № 3. — С. 74-78. — Бібліогр.: 12 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT artiushenkomyu comparisonofneutronphysicalcharacteristicsofuraniumtargetofassemblyquintairradiatedbyrelativisticdeuteronsand12cnuclei
AT baldinaa comparisonofneutronphysicalcharacteristicsofuraniumtargetofassemblyquintairradiatedbyrelativisticdeuteronsand12cnuclei
AT berlevai comparisonofneutronphysicalcharacteristicsofuraniumtargetofassemblyquintairradiatedbyrelativisticdeuteronsand12cnuclei
AT chilapvv comparisonofneutronphysicalcharacteristicsofuraniumtargetofassemblyquintairradiatedbyrelativisticdeuteronsand12cnuclei
AT dalkhajavo comparisonofneutronphysicalcharacteristicsofuraniumtargetofassemblyquintairradiatedbyrelativisticdeuteronsand12cnuclei
AT sotnikovvv comparisonofneutronphysicalcharacteristicsofuraniumtargetofassemblyquintairradiatedbyrelativisticdeuteronsand12cnuclei
AT tyutyunnikovsi comparisonofneutronphysicalcharacteristicsofuraniumtargetofassemblyquintairradiatedbyrelativisticdeuteronsand12cnuclei
AT voronkova comparisonofneutronphysicalcharacteristicsofuraniumtargetofassemblyquintairradiatedbyrelativisticdeuteronsand12cnuclei
AT zhadanaa comparisonofneutronphysicalcharacteristicsofuraniumtargetofassemblyquintairradiatedbyrelativisticdeuteronsand12cnuclei
first_indexed 2025-07-08T08:39:59Z
last_indexed 2025-07-08T08:39:59Z
_version_ 1837067403318525952
fulltext ISSN 1562-6016. ВАНТ. 2016. №3(103) 74 APPLICATION OF ACCELERATORS IN RADIATION TECHNOLOGIES COMPARISON OF NEUTRON-PHYSICAL CHARACTERISTICS OF URANIUM TARGET OF ASSEMBLY "QUINTA" IRRADIATED BY RELATIVISTIC DEUTERONS AND 12 C NUCLEI M.Yu. Artiushenko 1 , A.A. Baldin 2 , A.I. Berlev 2 , V.V. Chilap 3 , O. Dalkhajav 4 , V.V. Sotnikov 1 , S.I. Tyutyunnikov 2 , V.A. Voronko 1 , A.A. Zhadan 1 1 National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine; 2 Joint Institute for Nuclear Research, Dubna, Russia; 3 CPTP “Atomenergomash”, Moscow, Russia; 4 Institute of Physics and Technology, Ulan Bator, Mongolia E-mail: voronko@kipt.kharkov.ua At the present time disposal of spent nuclear fuel and fuel supply problem are two main reasons preventing wide distribution of nuclear power. One of the ways to solve this problem is using Nuclear Relativistic Technologies aimed at forming of maximum hard neutron spectrum in natural or depleted massive uranium targets irradiated by high energy (2…10 GeV) beams of relativistic particles. This paper describes the neutron generation in massive natural uranium target (assembly "QUINTA", mU ~ 500 kg) irradiated by beams of relativistic deuterons and 12C ions with energies of 2 and 4 AGeV at the accelerator Nuclotron (JINR, Dubna). The reactions nat U(n,f), 238 U(n,γ), and 59Co(n,x) were investigated using activation technique. Comparison of obtained experimental results in depend- ence on energy of incident beam and type of particles was carried out. PACS: 28.41. Kw, 28.50. Ft INTRODUCTION The increased in the past two decades interest in the study of subcritical accelerator-driven systems (ADS) for the purpose of using them to solve applied problems led to theoretical and experimental studies in this field in the world's leading nuclear centers. At the present time the powerful multipurpose accelerator centers such as SNS, USA (~1.3 MW power) [1], J-PARC, Japan (~1 MW) [2], the PSI, Switzerland (~0.75 MW) [3] have been operated. They have different departments in structure that study materials, transmutation of radioac- tive waste, medical radioisotopes production, etc. These centers use proton accelerators with energies of about 1 GeV (or less) for neutron generation. Meanwhile, a number of experiments have studied neutron production in thick targets (JINR, LANL, KEK, and ITEP) and found that more energy accelerators should be used for more effective neutron generation. In particular, the group of V. Yurevich (JINR, Dubna) performed the cycle of experimental studies [4, 5] and analysis of available experimental data of neutron energy spectra that produced in thick targets. It was shown that for thick targets secondary nuclear interactions in the target give additional contribution to neutron emission. Neu- tron multiplication with simultaneous weakening of the charged particle release makes thick target, especially as neutron sources. The ratio of total energy expended on the neutron formation to particle beam energy shows weak growth with beam energy and does not depend on type of particle primary beam. The effect of average neutron energy increasing per unit of beam energy with increasing of beam energy has also been noted. That could be used for further neutron multiplication when using a quasi-infinite target. In this context, a more effi- cient use of beam energy for neutron production will significantly increase the value of optimum beam parti- cle energy. During the last 5 years at JINR in the framework of collaboration "Energy and Transmutation of RAW" the nuclear physical characteristics of neutron fields gener- ated in massive uranium target irradiated by deuterons with energy 1…8 GeV have been studied [6]. One of the main collaboration objectives is to study of depend- ence of neutron generation in the uranium target on primary beam energy. This paper describes experiments on the irradiation of uranium assembly, surrounded by the lead blanket (assembly "QUINTA") by deuteron and 12C nuclei beams with energies 2 and 4 AGeV at the "Nuclotron" accelerator of JINR. The purposes of this work are: 1. To perform the monitoring of deuteron and 12C nuclei beams. 2. Using the activation technique to obtain the spa- tial distribution of density of radiative capture reactions 238U(n,γ), fission reactions natU(n,f), 59Co(n,x) reactions, spectral indices in the volume of uranium target, as well as the total number of capture and fission reactions. 3. To compare the experimental results depending on beam energy and type of accelerated particles. 1. EXPERIMENT AND METHODS The experimental setup "QUINTA" [6, 7] consists of uranium target (natU m = 512 kg), surrounded by lead blanket with thickness of 10 cm. Uranium target con- tains five sections. Before irradiation detector plates with sets of activation and track detectors were placed in the gaps between sections, as well at the front and rear end of the target. At the entrance of beam in the assembly the lead shielding has beam input window with size of 150 150 mm. Beside this first section also has input window with diameter of 80 mm. Natural ura- nium activation detectors with thickness of 1 mm and diameter of 8 mm were used in the experiment to obtain spatial distribution of natU fission reactions and neutron capture reactions on 238U. Activation detectors were mailto:voronko@kipt.kharkov.ua ISSN 1562-6016. ВАНТ. 2016. №3(103) 75 placed on six detector plates (Z = 0, 123, 254, 385, 516, 647 mm). Each plate except the first one contained 5 detectors at following distances from center R = 0, -40, -80, -120, +80 mm. Gamma spectra of irradiated samples were measured with HPGe detector. Energy and efficiency calibration of the detectors was performed using a set of conven- tional radioactive sources (54Mn, 57Co, 60Co, 88Y, 133Ba, 137Cs, 139Ce, 152Eu, 228Th). The number of neutron radiation capture reactions was determined by the yield of -line with energy of 277.6 keV accompanying decay of 239Np: 238U(n, )239U β- 239Np β- 239Pu. The number of fissions was determined by yield of gamma-lines 743.36, 364.49, 529.9, and 293.3 keV of fission fragments 97Zr, 131I, 133I and 143Ce respectively. Cumulative yields (CY) of these fragments remain ap- proximately constant in a wide range of neutron ener- gies from the fission-spectrum neutrons to neutrons with energy 22 MeV [12]. We used the next values of CY: 97 Zr – 5.7%, 131 I – 3.6%, 133 I – 6.3%, 143 Ce – 4.3%. Additionally 59Co activation detectors ~ 3 mm thick and ~ 15 mm diameter were used to study neutron spec- trum characteristics. Six 59Co detectors, that were placed one on each plate at the distance R = +40 mm from cen- ter of the target, were used in each irradiation. It should be noted that products of threshold reactions 59Co(n,x) with Eth from ~1 to ~100 MeV were observed in the measured -spectra of cobalt detectors. Obtained spatial distributions of reaction density were used to analyze the neutron spectrum produced in the uranium target of assembly "QUINTA". Monitoring of deuteron and 12C nuclei beams was carried out by activation of aluminum and copper foils in the reactions 27Al(d,x)24Na, 27Al(12C,x)24Na, 64Cu(d,x)24Na and 64Cu(12C,x)24Na. Cross sections of these reactions for given beam energy were chosen by averaging and interpolation of known experimental val- ues [8 - 10]. Techniques of beam monitoring has de- scribed in detail in paper [8]. Obtained total intensities of incident particles and used cross sections are shown in Table 1. Table 1 Cross sections of the reactions 27Al(d,x)24Na, 27Al(12C,x)24Na, 64Cu(d,x)24Na, 64Cu(12C,x)24Na, and total intensities of incident particles Is o to p e Energy, AGeV CS (Al), mb CS (Cu), mb Total intensity d 2 14.6 6.0 2.2·1013 4 14.0 6.3 6.1·1012 12C 2 19.4 9.5 2.1·1011 4 19.0 9.5 6.2·1010 2. RESULTS AND DISCUSSION Fig. 1 shows radial density distributions of 238U(n, ) and natU(n,f) reaction rates, as well radial dependences of 238 238U U capt f spectral index for three detector plates (Z = 0, 254, 647 mm) obtained in the experiments with 12C and deuteron beams of 2 AGeV energy. Reaction rates are given per one accelerated particle, one gram of natU, and 1 GeV of beam energy. Z = 0 0.4 0.6 0.7 0.9 1.0 1.2 0 20 40 60 80 100 120 140 R, mm N (n ,g ) x 1 0 -5 2 AGeV d 2 AGeV C12 Z = 0 0.4 0.8 1.2 1.6 2.0 0 20 40 60 80 100 120 140 R, mm N (n ,f ) x 1 0 -5 2 AGeV C12 2 AGeV d Z = 0 0.0 0.5 1.0 1.5 2.0 2.5 0 20 40 60 80 100 120 140 R, mm σ (n ,g )/ σ (n ,f ) 2 AGeV d 2 AGeV C12 Z = 254 1.0 2.2 3.4 4.6 5.8 7.0 0 20 40 60 80 100 120 140 R, mm N (n ,g ) x 1 0 -5 2 AGeV d 2 AGeV C12 Z = 254 0.0 3.5 7.0 10.5 14.0 17.5 0 20 40 60 80 100 120 140 R, mm N (n ,f ) x 1 0 -5 2 AGeV d 2 AGeV C12 Z = 254 0.0 0.4 0.8 1.2 1.6 2.0 0 20 40 60 80 100 120 140 R, mm σ (n ,g )/ σ (n ,f ) 2 AGeV d 2 AGeV C12 Z = 647 0.0 0.4 0.8 1.2 1.6 2.0 0 20 40 60 80 100 120 140 R, mm N (n ,g ) x 1 0 -5 2 AGeV d 2 AGeV C12 Z = 647 0.0 0.3 0.6 0.9 1.2 1.5 0 20 40 60 80 100 120 140 R, mm N (n ,f ) x 1 0 -5 2 AGeV d 2 AGeV C12 Z = 647 0.0 0.6 1.2 1.8 2.4 3.0 0 20 40 60 80 100 120 140 R, mm σ (n ,g )/ σ (n ,f ) 2 AGeV d 2 AGeV C12 Fig. 1. The radial distributions of density of 238U(n, ) neutron capture reaction rate (left), natU(n, f) fission reaction rate (center) and spectral indices (right) for deuterons and 12C nuclei with energy of 2 AGeV for detector plates Z = 0, 254, 647 mm ISSN 1562-6016. ВАНТ. 2016. №3(103) 76 This figure shows that yields of radiative capture and fission reactions for detector plate Z = 0 in case of deuterons are about 25% higher in comparison with case of 12C nuclei. For detector plates Z = 254, 647 mm the difference between yields reduces, but in the case of deuterons yields are always larger. The radial depend- ences of spectral index for all detector plates are about identical for both deuterons and 12C nuclei. The values of spectral index change from ~ 0.5 to ~ 2. For the 4 AGeV energy incident particles all radial distributions agree within experimental errors with the corresponding distributions shown in Fig. 1 for the 2 AGeV energy incident particles. This suggests that, firstly, with Z increasing neutron spectrum softening occurs, secondly, the neutron spectra for both types of incident particles and both energies (2 and 4 AGeV) are approximately identical. Based on obtained spatial distributions of neutron capture reactions on 238U and fissions of natU in the ura- nium target of assembly "QUINTA" the total number of 239Pu production and the total number of natU fissions were determined at the volume of uranium. Table 2 shows the experimental (obtained by interpolation of experimental points on uranium volume) integral num- bers of 239Pu nuclei and integral number of natU fissions for deuterons and 12C nuclei with energies of 2 and 4 AGeV. The results are shown per 1 accelerated parti- cle and 1 GeV of beam energy. Table 2 Total number of 239Pu nuclei and total number of fissions in uranium target of "QUINTA" Iso- tope Energy AGeV 239Pu natU(n,f) d 2 11.3 ± 0.6 9.6 ± 0.7 4 10.5 ± 0.6 9.5 ± 0.7 12C 2 8.7 ± 0.7 7.5 ± 0.8 4 7.8 ± 0.7 7.7 ± 0.8 In total five Runs of irradiation by deuterons with four energies (0.5, 1, 2 and 4 AGeV) [6] and 12C nuclei with two energies (2 and 4 AGeV) have been held dur- ing the research of neutron-physical characteristics of uranium target of assembly "QUINTA". Fig. 2 shows the results of total number of produced 239Pu nuclei and total number of fissions for four deuteron energies and two 12C nuclei energies per 1 accelerated particle and 1 GeV of beam energy. Data for deuterons are averaged over the results of several Runs. We can see that with increasing of primary particle energy the number (per unit of primary beam power) of radiative capture reactions and fissions does not change for deuterons and for 12C nuclei within the experimental error. It should be noted that in case of 12C nuclei the total number of fissions and especially the total number of captures is markedly lower than in case of deuteron irradiation. Perhaps this is due to usage of understated values of monitor reactions cross sections for 12C nuclei. 12С 12С D D D D 4 6 8 10 12 14 0 1 2 3 4 5 E, AGeV N (2 3 9 P u )/ p a rt ic le /G e V 12С12С DD D D 4 6 8 10 12 0 1 2 3 4 5 E, AGeV N (f is s io n )/ p a rt ic le /G e V Fig. 2. Total number of 239Pu nuclei (top) and total number of fissions (bottom) in the uranium target of assembly "QUINTA" at deuteron energy Ed = 0.55, 1, 2, 4 АGeV and 12C nucleus energy E12C = 2 and 4 АGeV Thus, we do not observe the neutron yield increase with growth of energy of primary accelerated particles predicted by V. Yurevich. Presumably this is due to insufficient size of uranium target, which is not quasi- infinite. Fig. 3 shows the radial distributions of total number of 239Pu production and uranium fissions (per unit of beam power) for each of the five sections of the urani- um target and for the whole target at different energies of 12C ion beam. Fig. 3. Dependence of integral distributions of reactions (n, γ) (left) and (n, f) (right) on the uranium target for 12C nuclei with energies of 2 and 4 AGeV Integral number of (n,f)-reactions 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 20 40 60 80 100 120 140 R, mm Total 0.0 0.5 1.0 1.5 2.0 2.5 3.0 N (f is s io n )/ C 1 2 /G e V 4 AGeV C12 D13 2 AGeV C12 D13 Section 1 Section 2 Section 3 Section 4 Section 5 (n,f) Integral number of 239Pu nuclei 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 20 40 60 80 100 120 140 R, mm Total 0.0 0.5 1.0 1.5 2.0 2.5 3.0 N (2 3 9 P u )/ C 1 2 /G e V 4 AGeV C12 D13 2 AGeV C12 D13 Section 1 Section 2 Section 3 Section 4 Section 5 239 Pu accumulation ISSN 1562-6016. ВАНТ. 2016. №3(103) 77 These distributions were obtained by integrating the corresponding radius of the target. That is, each point on the graph (see Fig. 3) shows the total number of fissions or the number of (n, γ) reactions in the cylindrical vol- ume of the corresponding radius of the section of urani- um target. It should be noted that those values have sub- stantially linear dependence in radial direction. In case of deuterons similar curves are observed [6]. It is clear that such dependence should go to the plateau with in- creasing of the uranium target radius. This condition corresponds to quasi-infinite target condition. Thus, obtained dependencies confirm that uranium target of assembly "QUINTA" is not quasi-infinite. As result of γ-spectra processing of irradiated Co ac- tivation detectors the yields of different 59Co(n,x) reac- tions were obtained. Fig. 4. Axial distribution of reaction rates 59Co(n,p)59Fe (left) and 59Co(n,x)48V (right) for deuteron energies Ed = 2 and 4 AGeV As an example, Fig. 4 shows the axial distributions of reaction rate 59Co(n,p)59Fe and 59Co(n,x)48V for deu- terons with energy Ed = 2 and 4 AGeV. The maximum cross section of 59Fe production is Emax ~ 13 MeV [10]. While the maximum cross section of 48V production is Emax ~ 160 MeV [11]. The figure analysis shows, that the number of neutrons with energies above 100 MeV increases with increasing of deuteron energy from 2 to 4 AGeV, but at the same time the number of neutrons with energies less than < 30 MeV decreases. Fig. 5. Dependence of the reaction rate ratio 59Co(n,x)48V/59Co(n,p)59Fe from deuteron energy This fact is indirect confirmation of the fact that neu- tron spectrum becomes harder with increasing of deu- teron energy in uranium target of assembly "QUINTA". Similar results were also obtained in previous target irradiation by three deuteron energies 1, 2, 4 AGeV. Fig. 5 shows dependence of reaction rate ratio 59Co(n,x)48V/59Co(n,p)59Fe from deuteron energy. This figure shows that reaction rate ratio increases with in- creasing of energy of primary deuteron beam. As for 12C nuclei case, we could not determine the reaction yields 59Co(n,x) reliably due to insufficient intensity of prima- ry beam (see Table 1). CONCLUSIONS Based on the measured spatial distributions of densi- ty of radiative neutron capture and fission reactions, the total number of above reactions in the volume of urani- um target of assembly "QUINTA" was obtained. Within experimental error, total number of reactions 238U(n,γ) and total number of reactions natU(n,f) do not change both for deuterons (energy range from 1 to 8 GeV) and for 12C nuclei (24 and 48 GeV). That is we didn’t note increase of the neutron yield as from thermal neutrons and above as from neutrons with energy above than 1 MeV. Probably, this is due to the fact that irradiated uranium target is not quasi-infinite (R ~ 15 cm and av- erage density ~ 12 g/cm3). Using activation cobalt de- tectors it was found that neutron spectrum hardening in the uranium target of assembly "QUINTA" was ob- served with increasing of deuteron energy. For this type of particles and their energy range such experiments were performed for the first time. REFERENCES 1. Web site of ORNL. http://neutrons.ornl.gov/facilities/SNS/works.shtml 2. Web site of J-PARC. http://j-parc.jp/index-e.html 3. Y. Kadi, A. Herrera-Martinez. Multi-MW target development for EURISOL & EUROTRANS Euro- pean Organization for Nuclear Research // BENE Week, CERN, Switzerland, March 16-19, 2005. 48V / 59Fe 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 0 2 4 6 8 10 Deuteron Energy http://neutrons.ornl.gov/facilities/SNS/works.shtml http://j-parc.jp/index-e.html ISSN 1562-6016. ВАНТ. 2016. №3(103) 78 4. V.I. Yurevich, R.M. Yakovlev, V.G. Lyapin. The study of neutron emission in the interaction of nuclei 1H, 2H, 4He, 12C, with energy of 1…2 AGeV with lead nuclei // Nuclear Physics. 2006, v. 69, № 9, p. 1531-1543. 5. V.I. Yurevich, R.M. Yakovlev, R.G. Vassilkov, et al. Production and multiplication of neutrons in lead targets induced by protons above 1 GeV // NIM. 2006, v. A562, p. 747-749. 6. M.Yu. Artiushenko, V.A. Voronko, K.V. Husak, et al. Investigation of the spatial and energy distribu- tions of neutrons in the massive uranium target irra- diated by deuterons with energy of 1…8 GeV // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations”. 2013, № 6, p. 170-174. 7. L. Zavorka, J. Adam, V.V. Sotnikov, et al. Neutron- induced transmutation reactions in 237Np, 238Pu, and 239Pu at the massive natural uranium spallation tar- get // NIM. 2015, v. B349, p. 31-38. 8. M. Artiushenko, V. Voronko, Yu. Petrusenko, et al. Monitoring of high energy deuteron beams in the experiments with massive targets // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations”. 2014, № 3, p. 186-189. 9. A.A. Safronava, A.A. Patapenka, V.V. Sotnikov, et al. Monitoring of GeV Deuteron Beam Parameters in ADS Experiments at the Nuclotron (JINR, Dub- na) // Proc. of DIPAC2011, Hamburg, Germany, May 2011, p. 530-532. 10. Web site of Experimental Nuclear Reaction Data (EXFOR). https://www-nds.iaea.org/exfor/exfor.htm 11. Web site of TENDL-2014: TALYS-based evaluated nuclear data library. ftp://ftp.nrg.eu/pub/www/talys/tendl2014/tendl2014. html 12. L. Yonghui, Y. Yi, F Jing, et al. Mass Distributions of 22.0 MeV Neutron-induced Fission of 238U // Communication of Nuclear Data Progress. 2001, № 26, p. 2-4. Article received 25.02.2016 СРАВНЕНИЕ НЕЙТРОННО-ФИЗИЧЕСКИХ ХАРАКТЕРИСТИК УРАНОВОЙ МИШЕНИ УСТАНОВКИ «КВИНТА» ПРИ ОБЛУЧЕНИИ РЕЛЯТИВИСТСКИМИ ДЕЙТРОНАМИ И ЯДРАМИ 12 C M.Ю. Артюшенко, А.А. Балдин, А.И. Берлев, В.В. Чилап, О. Далхажав, В.В. Сотников, С.И. Тютюнников, В.А. Воронко, А.А. Жадан Проблема утилизации отработанного ядерного топлива и ограниченность запасов сырья на сегодняшний день являются двумя основными причинами, препятствующими широкомасштабному распространению атомной энергетики. Одним из путей решения данных проблем является использование ядерных реляти- вистских технологий, которые предлагают использование максимально жѐсткого спектра нейтронов в мас- сивных мишенях из природного или обеднѐнного урана, облучаемых пучками релятивистских частиц высо- ких энергий (2…10 ГэВ). Данная работа описывает исследование генерации нейтронов в протяжѐнной ми- шени из природного урана (установка "КВИНТА", mU ~ 500 кг), облучаемой пучками релятивистских дей- тронов и ядер 12С с энергиями 2 и 4 ГэВ/нукл. на ускорителе «Нуклотрон» (ОИЯИ, Дубна). С помощью ак- тивационной методики были исследованы скорости реакций: natU(n,f), 238U(n,γ), 59Co(n,x). Проведено сравне- ние полученных экспериментальных результатов в зависимости от энергии и вида налетающих частиц. ПОРІВНЯННЯ НЕЙТРОННО-ФІЗИЧНИХ ХАРАКТЕРИСТИК УРАНОВОЇ МІШЕНІ УСТАНОВКИ «КВІНТА» ПРИ ОПРОМІНЕННІ РЕЛЯТИВІСТСЬКИМИ ДЕЙТРОНАМИ ТА ЯДРАМИ 12 C M.Ю. Артюшенко, А.А. Балдін, А.І. Берлєв, В.В. Чілап, О. Далхажав, В.В. Сотнiков, С.І. Тютюнников, В.А. Воронко, А.А. Жадан Проблема утилізації відпрацьованого ядерного палива та обмеженість запасів сировини на сьогоднішній день є двома основними причинами, що перешкоджають широкомасштабному поширенню атомної енерге- тики. Одним із шляхів вирішення даних проблем є використання ядерних релятивістських технологій, які пропонують використання максимально жорсткого спектра нейтронів у масивних мішенях з природного або збідненого урану, що опромінюються пучками релятивістських частинок високих енергій (2…10 ГеВ). Дана робота описує дослідження генерації нейтронів у протяжній мішені з природного урану (установка "КВІНТА", mU ~ 500 кг), яка опромінювалася пучками релятивістських дейтронів та ядер 12С з енергіями 2 та 4 ГеВ/нукл. на прискорювачі «Нуклотрон» (ОІЯД, Дубна). За допомогою активаційної методики були досліджені швидкості реакцій: natU(n,f), 238U(n,γ), 59Co(n,x). Проведено порівняння отриманих експеримента- льних результатів залежно від енергії та виду налітаючих частинок. https://www-nds.iaea.org/exfor/exfor.htm ftp://ftp.nrg.eu/pub/www/talys/tendl2014/tendl2014.html ftp://ftp.nrg.eu/pub/www/talys/tendl2014/tendl2014.html