Comparison of neutron-physical characteristics of uranium target of assembly "quinta" irradiated by relativistic deuterons and ¹²C nuclei
At the present time disposal of spent nuclear fuel and fuel supply problem are two main reasons preventing wide distribution of nuclear power. One of the ways to solve this problem is using Nuclear Relativistic Technologies aimed at forming of maximum hard neutron spectrum in natural or depleted mas...
Gespeichert in:
Datum: | 2016 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2016
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/115364 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Comparison of neutron-physical characteristics of uranium target of assembly "quinta" irradiated by relativistic deuterons and ¹²C nuclei / M.Yu. Artiushenko, A.A. Baldin, A.I. Berlev, V.V. Chilap, O. Dalkhajav, V.V. Sotnikov, S.I. Tyutyunnikov, V.A. Voronko, A.A. Zhadan // Вопросы атомной науки и техники. — 2016. — № 3. — С. 74-78. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-115364 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1153642017-04-04T03:02:33Z Comparison of neutron-physical characteristics of uranium target of assembly "quinta" irradiated by relativistic deuterons and ¹²C nuclei Artiushenko, M.Yu. Baldin, A.A. Berlev, A.I. Chilap, V.V. Dalkhajav, O. Sotnikov, V.V. Tyutyunnikov, S.I. Voronko, V.A. Zhadan, A.A. Применение ускорителей в радиационных технологиях At the present time disposal of spent nuclear fuel and fuel supply problem are two main reasons preventing wide distribution of nuclear power. One of the ways to solve this problem is using Nuclear Relativistic Technologies aimed at forming of maximum hard neutron spectrum in natural or depleted massive uranium targets irradiated by high energy (2…10 GeV) beams of relativistic particles. This paper describes the neutron generation in massive natural uranium target (assembly "QUINTA", mU ~ 500 kg) irradiated by beams of relativistic deuterons and 12C ions with energies of 2 and 4 AGeV at the accelerator Nuclotron (JINR, Dubna). The reactions natU(n,f), ²³⁸U(n,γ), and ⁵⁹Co(n,x) were investigated using activation technique. Comparison of obtained experimental results in dependence on energy of incident beam and type of particles was carried out. Проблема утилизации отработанного ядерного топлива и ограниченность запасов сырья на сегодняшний день являются двумя основными причинами, препятствующими широкомасштабному распространению атомной энергетики. Одним из путей решения данных проблем является использование ядерных релятивистских технологий, которые предлагают использование максимально жѐсткого спектра нейтронов в массивных мишенях из природного или обеднѐнного урана, облучаемых пучками релятивистских частиц высоких энергий (2…10 ГэВ). Данная работа описывает исследование генерации нейтронов в протяжѐнной мишени из природного урана (установка "КВИНТА", mU ~ 500 кг), облучаемой пучками релятивистских дейтронов и ядер ¹²C с энергиями 2 и 4 ГэВ/нукл. на ускорителе «Нуклотрон» (ОИЯИ, Дубна). С помощью активационной методики были исследованы скорости реакций: natU(n,f), ²³⁸U(n,γ), ⁵⁹Co(n,x). Проведено сравнение полученных экспериментальных результатов в зависимости от энергии и вида налетающих частиц. Проблема утилізації відпрацьованого ядерного палива та обмеженість запасів сировини на сьогоднішній день є двома основними причинами, що перешкоджають широкомасштабному поширенню атомної енергетики. Одним із шляхів вирішення даних проблем є використання ядерних релятивістських технологій, які пропонують використання максимально жорсткого спектра нейтронів у масивних мішенях з природного або збідненого урану, що опромінюються пучками релятивістських частинок високих енергій (2…10 ГеВ). Дана робота описує дослідження генерації нейтронів у протяжній мішені з природного урану (установка "КВІНТА", mU ~ 500 кг), яка опромінювалася пучками релятивістських дейтронів та ядер ¹²C з енергіями 2 та 4 ГеВ/нукл. на прискорювачі «Нуклотрон» (ОІЯД, Дубна). За допомогою активаційної методики були досліджені швидкості реакцій: natU(n,f), ²³⁸U(n,γ), ⁵⁹Co(n,x). Проведено порівняння отриманих експериментальних результатів залежно від енергії та виду налітаючих частинок 2016 Article Comparison of neutron-physical characteristics of uranium target of assembly "quinta" irradiated by relativistic deuterons and ¹²C nuclei / M.Yu. Artiushenko, A.A. Baldin, A.I. Berlev, V.V. Chilap, O. Dalkhajav, V.V. Sotnikov, S.I. Tyutyunnikov, V.A. Voronko, A.A. Zhadan // Вопросы атомной науки и техники. — 2016. — № 3. — С. 74-78. — Бібліогр.: 12 назв. — англ. 1562-6016 PACS: 28.41. Kw, 28.50. Ft http://dspace.nbuv.gov.ua/handle/123456789/115364 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Применение ускорителей в радиационных технологиях Применение ускорителей в радиационных технологиях |
spellingShingle |
Применение ускорителей в радиационных технологиях Применение ускорителей в радиационных технологиях Artiushenko, M.Yu. Baldin, A.A. Berlev, A.I. Chilap, V.V. Dalkhajav, O. Sotnikov, V.V. Tyutyunnikov, S.I. Voronko, V.A. Zhadan, A.A. Comparison of neutron-physical characteristics of uranium target of assembly "quinta" irradiated by relativistic deuterons and ¹²C nuclei Вопросы атомной науки и техники |
description |
At the present time disposal of spent nuclear fuel and fuel supply problem are two main reasons preventing wide distribution of nuclear power. One of the ways to solve this problem is using Nuclear Relativistic Technologies aimed at forming of maximum hard neutron spectrum in natural or depleted massive uranium targets irradiated by high energy (2…10 GeV) beams of relativistic particles. This paper describes the neutron generation in massive natural uranium target (assembly "QUINTA", mU ~ 500 kg) irradiated by beams of relativistic deuterons and 12C ions with energies of 2 and 4 AGeV at the accelerator Nuclotron (JINR, Dubna). The reactions natU(n,f), ²³⁸U(n,γ), and ⁵⁹Co(n,x) were investigated using activation technique. Comparison of obtained experimental results in dependence on energy of incident beam and type of particles was carried out. |
format |
Article |
author |
Artiushenko, M.Yu. Baldin, A.A. Berlev, A.I. Chilap, V.V. Dalkhajav, O. Sotnikov, V.V. Tyutyunnikov, S.I. Voronko, V.A. Zhadan, A.A. |
author_facet |
Artiushenko, M.Yu. Baldin, A.A. Berlev, A.I. Chilap, V.V. Dalkhajav, O. Sotnikov, V.V. Tyutyunnikov, S.I. Voronko, V.A. Zhadan, A.A. |
author_sort |
Artiushenko, M.Yu. |
title |
Comparison of neutron-physical characteristics of uranium target of assembly "quinta" irradiated by relativistic deuterons and ¹²C nuclei |
title_short |
Comparison of neutron-physical characteristics of uranium target of assembly "quinta" irradiated by relativistic deuterons and ¹²C nuclei |
title_full |
Comparison of neutron-physical characteristics of uranium target of assembly "quinta" irradiated by relativistic deuterons and ¹²C nuclei |
title_fullStr |
Comparison of neutron-physical characteristics of uranium target of assembly "quinta" irradiated by relativistic deuterons and ¹²C nuclei |
title_full_unstemmed |
Comparison of neutron-physical characteristics of uranium target of assembly "quinta" irradiated by relativistic deuterons and ¹²C nuclei |
title_sort |
comparison of neutron-physical characteristics of uranium target of assembly "quinta" irradiated by relativistic deuterons and ¹²c nuclei |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2016 |
topic_facet |
Применение ускорителей в радиационных технологиях |
url |
http://dspace.nbuv.gov.ua/handle/123456789/115364 |
citation_txt |
Comparison of neutron-physical characteristics of uranium target of assembly "quinta" irradiated by relativistic deuterons and ¹²C nuclei / M.Yu. Artiushenko, A.A. Baldin, A.I. Berlev, V.V. Chilap, O. Dalkhajav, V.V. Sotnikov, S.I. Tyutyunnikov, V.A. Voronko, A.A. Zhadan // Вопросы атомной науки и техники. — 2016. — № 3. — С. 74-78. — Бібліогр.: 12 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT artiushenkomyu comparisonofneutronphysicalcharacteristicsofuraniumtargetofassemblyquintairradiatedbyrelativisticdeuteronsand12cnuclei AT baldinaa comparisonofneutronphysicalcharacteristicsofuraniumtargetofassemblyquintairradiatedbyrelativisticdeuteronsand12cnuclei AT berlevai comparisonofneutronphysicalcharacteristicsofuraniumtargetofassemblyquintairradiatedbyrelativisticdeuteronsand12cnuclei AT chilapvv comparisonofneutronphysicalcharacteristicsofuraniumtargetofassemblyquintairradiatedbyrelativisticdeuteronsand12cnuclei AT dalkhajavo comparisonofneutronphysicalcharacteristicsofuraniumtargetofassemblyquintairradiatedbyrelativisticdeuteronsand12cnuclei AT sotnikovvv comparisonofneutronphysicalcharacteristicsofuraniumtargetofassemblyquintairradiatedbyrelativisticdeuteronsand12cnuclei AT tyutyunnikovsi comparisonofneutronphysicalcharacteristicsofuraniumtargetofassemblyquintairradiatedbyrelativisticdeuteronsand12cnuclei AT voronkova comparisonofneutronphysicalcharacteristicsofuraniumtargetofassemblyquintairradiatedbyrelativisticdeuteronsand12cnuclei AT zhadanaa comparisonofneutronphysicalcharacteristicsofuraniumtargetofassemblyquintairradiatedbyrelativisticdeuteronsand12cnuclei |
first_indexed |
2025-07-08T08:39:59Z |
last_indexed |
2025-07-08T08:39:59Z |
_version_ |
1837067403318525952 |
fulltext |
ISSN 1562-6016. ВАНТ. 2016. №3(103) 74
APPLICATION OF ACCELERATORS IN RADIATION TECHNOLOGIES
COMPARISON OF NEUTRON-PHYSICAL CHARACTERISTICS
OF URANIUM TARGET OF ASSEMBLY "QUINTA" IRRADIATED
BY RELATIVISTIC DEUTERONS AND
12
C NUCLEI
M.Yu. Artiushenko
1
, A.A. Baldin
2
, A.I. Berlev
2
, V.V. Chilap
3
, O. Dalkhajav
4
, V.V. Sotnikov
1
,
S.I. Tyutyunnikov
2
, V.A. Voronko
1
, A.A. Zhadan
1
1
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine;
2
Joint Institute for Nuclear Research, Dubna, Russia;
3
CPTP “Atomenergomash”, Moscow, Russia;
4
Institute of Physics and Technology, Ulan Bator, Mongolia
E-mail: voronko@kipt.kharkov.ua
At the present time disposal of spent nuclear fuel and fuel supply problem are two main reasons preventing wide
distribution of nuclear power. One of the ways to solve this problem is using Nuclear Relativistic Technologies
aimed at forming of maximum hard neutron spectrum in natural or depleted massive uranium targets irradiated by
high energy (2…10 GeV) beams of relativistic particles. This paper describes the neutron generation in massive
natural uranium target (assembly "QUINTA", mU ~ 500 kg) irradiated by beams of relativistic deuterons and 12C
ions with energies of 2 and 4 AGeV at the accelerator Nuclotron (JINR, Dubna). The reactions
nat
U(n,f),
238
U(n,γ),
and 59Co(n,x) were investigated using activation technique. Comparison of obtained experimental results in depend-
ence on energy of incident beam and type of particles was carried out.
PACS: 28.41. Kw, 28.50. Ft
INTRODUCTION
The increased in the past two decades interest in the
study of subcritical accelerator-driven systems (ADS)
for the purpose of using them to solve applied problems
led to theoretical and experimental studies in this field
in the world's leading nuclear centers. At the present
time the powerful multipurpose accelerator centers such
as SNS, USA (~1.3 MW power) [1], J-PARC, Japan
(~1 MW) [2], the PSI, Switzerland (~0.75 MW) [3]
have been operated. They have different departments in
structure that study materials, transmutation of radioac-
tive waste, medical radioisotopes production, etc. These
centers use proton accelerators with energies of about
1 GeV (or less) for neutron generation. Meanwhile, a
number of experiments have studied neutron production
in thick targets (JINR, LANL, KEK, and ITEP) and
found that more energy accelerators should be used for
more effective neutron generation. In particular, the
group of V. Yurevich (JINR, Dubna) performed the
cycle of experimental studies [4, 5] and analysis of
available experimental data of neutron energy spectra
that produced in thick targets. It was shown that for
thick targets secondary nuclear interactions in the target
give additional contribution to neutron emission. Neu-
tron multiplication with simultaneous weakening of the
charged particle release makes thick target, especially as
neutron sources. The ratio of total energy expended on
the neutron formation to particle beam energy shows
weak growth with beam energy and does not depend on
type of particle primary beam. The effect of average
neutron energy increasing per unit of beam energy with
increasing of beam energy has also been noted. That
could be used for further neutron multiplication when
using a quasi-infinite target. In this context, a more effi-
cient use of beam energy for neutron production will
significantly increase the value of optimum beam parti-
cle energy.
During the last 5 years at JINR in the framework of
collaboration "Energy and Transmutation of RAW" the
nuclear physical characteristics of neutron fields gener-
ated in massive uranium target irradiated by deuterons
with energy 1…8 GeV have been studied [6]. One of
the main collaboration objectives is to study of depend-
ence of neutron generation in the uranium target on
primary beam energy. This paper describes experiments
on the irradiation of uranium assembly, surrounded by
the lead blanket (assembly "QUINTA") by deuteron and
12C nuclei beams with energies 2 and 4 AGeV at the
"Nuclotron" accelerator of JINR.
The purposes of this work are:
1. To perform the monitoring of deuteron and 12C
nuclei beams.
2. Using the activation technique to obtain the spa-
tial distribution of density of radiative capture reactions
238U(n,γ), fission reactions natU(n,f), 59Co(n,x) reactions,
spectral indices in the volume of uranium target, as well
as the total number of capture and fission reactions.
3. To compare the experimental results depending
on beam energy and type of accelerated particles.
1. EXPERIMENT AND METHODS
The experimental setup "QUINTA" [6, 7] consists of
uranium target (natU m = 512 kg), surrounded by lead
blanket with thickness of 10 cm. Uranium target con-
tains five sections. Before irradiation detector plates
with sets of activation and track detectors were placed
in the gaps between sections, as well at the front and
rear end of the target. At the entrance of beam in the
assembly the lead shielding has beam input window
with size of 150 150 mm. Beside this first section also
has input window with diameter of 80 mm. Natural ura-
nium activation detectors with thickness of 1 mm and
diameter of 8 mm were used in the experiment to obtain
spatial distribution of natU fission reactions and neutron
capture reactions on 238U. Activation detectors were
mailto:voronko@kipt.kharkov.ua
ISSN 1562-6016. ВАНТ. 2016. №3(103) 75
placed on six detector plates (Z = 0, 123, 254, 385, 516,
647 mm). Each plate except the first one contained 5
detectors at following distances from center R = 0, -40,
-80, -120, +80 mm.
Gamma spectra of irradiated samples were measured
with HPGe detector. Energy and efficiency calibration
of the detectors was performed using a set of conven-
tional radioactive sources (54Mn, 57Co, 60Co, 88Y, 133Ba,
137Cs, 139Ce, 152Eu, 228Th).
The number of neutron radiation capture reactions
was determined by the yield of -line with energy of
277.6 keV accompanying decay of 239Np:
238U(n, )239U β- 239Np β- 239Pu.
The number of fissions was determined by yield of
gamma-lines 743.36, 364.49, 529.9, and 293.3 keV of
fission fragments 97Zr, 131I, 133I and 143Ce respectively.
Cumulative yields (CY) of these fragments remain ap-
proximately constant in a wide range of neutron ener-
gies from the fission-spectrum neutrons to neutrons with
energy 22 MeV [12]. We used the next values of CY:
97
Zr – 5.7%,
131
I – 3.6%,
133
I – 6.3%,
143
Ce – 4.3%.
Additionally 59Co activation detectors ~ 3 mm thick
and ~ 15 mm diameter were used to study neutron spec-
trum characteristics. Six 59Co detectors, that were placed
one on each plate at the distance R = +40 mm from cen-
ter of the target, were used in each irradiation. It should
be noted that products of threshold reactions 59Co(n,x)
with Eth from ~1 to ~100 MeV were observed in the
measured -spectra of cobalt detectors. Obtained spatial
distributions of reaction density were used to analyze
the neutron spectrum produced in the uranium target of
assembly "QUINTA".
Monitoring of deuteron and 12C nuclei beams was
carried out by activation of aluminum and copper foils
in the reactions 27Al(d,x)24Na, 27Al(12C,x)24Na,
64Cu(d,x)24Na and 64Cu(12C,x)24Na. Cross sections of
these reactions for given beam energy were chosen by
averaging and interpolation of known experimental val-
ues [8 - 10]. Techniques of beam monitoring has de-
scribed in detail in paper [8]. Obtained total intensities
of incident particles and used cross sections are shown
in Table 1.
Table 1
Cross sections of the reactions 27Al(d,x)24Na,
27Al(12C,x)24Na, 64Cu(d,x)24Na, 64Cu(12C,x)24Na, and
total intensities of incident particles
Is
o
to
p
e
Energy,
AGeV
CS (Al),
mb
CS (Cu),
mb
Total
intensity
d
2 14.6 6.0 2.2·1013
4 14.0 6.3 6.1·1012
12C
2 19.4 9.5 2.1·1011
4 19.0 9.5 6.2·1010
2. RESULTS AND DISCUSSION
Fig. 1 shows radial density distributions of 238U(n, )
and natU(n,f) reaction rates, as well radial dependences
of 238 238U U
capt f
spectral index for three detector plates
(Z = 0, 254, 647 mm) obtained in the experiments with
12C and deuteron beams of 2 AGeV energy. Reaction
rates are given per one accelerated particle, one gram of
natU, and 1 GeV of beam energy.
Z = 0
0.4
0.6
0.7
0.9
1.0
1.2
0 20 40 60 80 100 120 140
R, mm
N
(n
,g
)
x
1
0
-5
2 AGeV d
2 AGeV C12
Z = 0
0.4
0.8
1.2
1.6
2.0
0 20 40 60 80 100 120 140
R, mm
N
(n
,f
)
x
1
0
-5
2 AGeV C12
2 AGeV d
Z = 0
0.0
0.5
1.0
1.5
2.0
2.5
0 20 40 60 80 100 120 140
R, mm
σ
(n
,g
)/
σ
(n
,f
)
2 AGeV d
2 AGeV C12
Z = 254
1.0
2.2
3.4
4.6
5.8
7.0
0 20 40 60 80 100 120 140
R, mm
N
(n
,g
)
x
1
0
-5
2 AGeV d
2 AGeV C12
Z = 254
0.0
3.5
7.0
10.5
14.0
17.5
0 20 40 60 80 100 120 140
R, mm
N
(n
,f
)
x
1
0
-5
2 AGeV d
2 AGeV C12
Z = 254
0.0
0.4
0.8
1.2
1.6
2.0
0 20 40 60 80 100 120 140
R, mm
σ
(n
,g
)/
σ
(n
,f
)
2 AGeV d
2 AGeV C12
Z = 647
0.0
0.4
0.8
1.2
1.6
2.0
0 20 40 60 80 100 120 140
R, mm
N
(n
,g
)
x
1
0
-5
2 AGeV d
2 AGeV C12
Z = 647
0.0
0.3
0.6
0.9
1.2
1.5
0 20 40 60 80 100 120 140
R, mm
N
(n
,f
)
x
1
0
-5
2 AGeV d
2 AGeV C12
Z = 647
0.0
0.6
1.2
1.8
2.4
3.0
0 20 40 60 80 100 120 140
R, mm
σ
(n
,g
)/
σ
(n
,f
)
2 AGeV d
2 AGeV C12
Fig. 1. The radial distributions of density of 238U(n, ) neutron capture reaction rate (left), natU(n, f) fission reaction
rate (center) and spectral indices (right) for deuterons and 12C nuclei with energy of 2 AGeV for detector plates
Z = 0, 254, 647 mm
ISSN 1562-6016. ВАНТ. 2016. №3(103) 76
This figure shows that yields of radiative capture
and fission reactions for detector plate Z = 0 in case of
deuterons are about 25% higher in comparison with case
of 12C nuclei. For detector plates Z = 254, 647 mm the
difference between yields reduces, but in the case of
deuterons yields are always larger. The radial depend-
ences of spectral index for all detector plates are about
identical for both deuterons and 12C nuclei. The values
of spectral index change from ~ 0.5 to ~ 2.
For the 4 AGeV energy incident particles all radial
distributions agree within experimental errors with the
corresponding distributions shown in Fig. 1 for the
2 AGeV energy incident particles.
This suggests that, firstly, with Z increasing neutron
spectrum softening occurs, secondly, the neutron spectra
for both types of incident particles and both energies (2
and 4 AGeV) are approximately identical.
Based on obtained spatial distributions of neutron
capture reactions on 238U and fissions of natU in the ura-
nium target of assembly "QUINTA" the total number of
239Pu production and the total number of natU fissions
were determined at the volume of uranium. Table 2
shows the experimental (obtained by interpolation of
experimental points on uranium volume) integral num-
bers of 239Pu nuclei and integral number of natU fissions
for deuterons and 12C nuclei with energies of 2 and
4 AGeV. The results are shown per 1 accelerated parti-
cle and 1 GeV of beam energy.
Table 2
Total number of 239Pu nuclei and total number
of fissions in uranium target of "QUINTA"
Iso-
tope Energy AGeV 239Pu natU(n,f)
d
2 11.3 ± 0.6 9.6 ± 0.7
4 10.5 ± 0.6 9.5 ± 0.7
12C
2 8.7 ± 0.7 7.5 ± 0.8
4 7.8 ± 0.7 7.7 ± 0.8
In total five Runs of irradiation by deuterons with
four energies (0.5, 1, 2 and 4 AGeV) [6] and 12C nuclei
with two energies (2 and 4 AGeV) have been held dur-
ing the research of neutron-physical characteristics of
uranium target of assembly "QUINTA". Fig. 2 shows
the results of total number of produced 239Pu nuclei and
total number of fissions for four deuteron energies and
two 12C nuclei energies per 1 accelerated particle and
1 GeV of beam energy. Data for deuterons are averaged
over the results of several Runs.
We can see that with increasing of primary particle
energy the number (per unit of primary beam power) of
radiative capture reactions and fissions does not change
for deuterons and for 12C nuclei within the experimental
error. It should be noted that in case of 12C nuclei the
total number of fissions and especially the total number
of captures is markedly lower than in case of deuteron
irradiation. Perhaps this is due to usage of understated
values of monitor reactions cross sections for 12C nuclei.
12С
12С
D
D
D
D
4
6
8
10
12
14
0 1 2 3 4 5
E, AGeV
N
(2
3
9
P
u
)/
p
a
rt
ic
le
/G
e
V
12С12С
DD
D
D
4
6
8
10
12
0 1 2 3 4 5
E, AGeV
N
(f
is
s
io
n
)/
p
a
rt
ic
le
/G
e
V
Fig. 2. Total number of 239Pu nuclei (top) and total
number of fissions (bottom) in the uranium target
of assembly "QUINTA" at deuteron energy
Ed = 0.55, 1, 2, 4 АGeV and 12C nucleus energy
E12C = 2 and 4 АGeV
Thus, we do not observe the neutron yield increase
with growth of energy of primary accelerated particles
predicted by V. Yurevich. Presumably this is due to
insufficient size of uranium target, which is not quasi-
infinite.
Fig. 3 shows the radial distributions of total number
of 239Pu production and uranium fissions (per unit of
beam power) for each of the five sections of the urani-
um target and for the whole target at different energies
of 12C ion beam.
Fig. 3. Dependence of integral distributions of reactions (n, γ) (left) and (n, f) (right) on the uranium target
for 12C nuclei with energies of 2 and 4 AGeV
Integral number
of (n,f)-reactions
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
20 40 60 80 100 120 140
R, mm
Total
0.0
0.5
1.0
1.5
2.0
2.5
3.0
N
(f
is
s
io
n
)/
C
1
2
/G
e
V
4 AGeV C12 D13
2 AGeV C12 D13
Section 1
Section 2
Section 3
Section 4
Section 5
(n,f)
Integral number of
239Pu nuclei
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
20 40 60 80 100 120 140
R, mm
Total
0.0
0.5
1.0
1.5
2.0
2.5
3.0
N
(2
3
9
P
u
)/
C
1
2
/G
e
V
4 AGeV C12 D13
2 AGeV C12 D13
Section 1
Section 2
Section 3
Section 4
Section 5
239
Pu accumulation
ISSN 1562-6016. ВАНТ. 2016. №3(103) 77
These distributions were obtained by integrating the
corresponding radius of the target. That is, each point on
the graph (see Fig. 3) shows the total number of fissions
or the number of (n, γ) reactions in the cylindrical vol-
ume of the corresponding radius of the section of urani-
um target. It should be noted that those values have sub-
stantially linear dependence in radial direction. In case
of deuterons similar curves are observed [6]. It is clear
that such dependence should go to the plateau with in-
creasing of the uranium target radius. This condition
corresponds to quasi-infinite target condition. Thus,
obtained dependencies confirm that uranium target of
assembly "QUINTA" is not quasi-infinite.
As result of γ-spectra processing of irradiated Co ac-
tivation detectors the yields of different 59Co(n,x) reac-
tions were obtained.
Fig. 4. Axial distribution of reaction rates 59Co(n,p)59Fe (left) and 59Co(n,x)48V (right) for deuteron energies
Ed = 2 and 4 AGeV
As an example, Fig. 4 shows the axial distributions
of reaction rate 59Co(n,p)59Fe and 59Co(n,x)48V for deu-
terons with energy Ed = 2 and 4 AGeV. The maximum
cross section of 59Fe production is Emax ~ 13 MeV [10].
While the maximum cross section of 48V production is
Emax ~ 160 MeV [11]. The figure analysis shows, that
the number of neutrons with energies above 100 MeV
increases with increasing of deuteron energy from 2 to
4 AGeV, but at the same time the number of neutrons
with energies less than < 30 MeV decreases.
Fig. 5. Dependence of the reaction rate ratio
59Co(n,x)48V/59Co(n,p)59Fe from deuteron energy
This fact is indirect confirmation of the fact that neu-
tron spectrum becomes harder with increasing of deu-
teron energy in uranium target of assembly "QUINTA".
Similar results were also obtained in previous target
irradiation by three deuteron energies 1, 2, 4 AGeV.
Fig. 5 shows dependence of reaction rate ratio
59Co(n,x)48V/59Co(n,p)59Fe from deuteron energy. This
figure shows that reaction rate ratio increases with in-
creasing of energy of primary deuteron beam. As for 12C
nuclei case, we could not determine the reaction yields
59Co(n,x) reliably due to insufficient intensity of prima-
ry beam (see Table 1).
CONCLUSIONS
Based on the measured spatial distributions of densi-
ty of radiative neutron capture and fission reactions, the
total number of above reactions in the volume of urani-
um target of assembly "QUINTA" was obtained. Within
experimental error, total number of reactions 238U(n,γ)
and total number of reactions natU(n,f) do not change
both for deuterons (energy range from 1 to 8 GeV) and
for 12C nuclei (24 and 48 GeV). That is we didn’t note
increase of the neutron yield as from thermal neutrons
and above as from neutrons with energy above than
1 MeV. Probably, this is due to the fact that irradiated
uranium target is not quasi-infinite (R ~ 15 cm and av-
erage density ~ 12 g/cm3). Using activation cobalt de-
tectors it was found that neutron spectrum hardening in
the uranium target of assembly "QUINTA" was ob-
served with increasing of deuteron energy. For this type
of particles and their energy range such experiments
were performed for the first time.
REFERENCES
1. Web site of ORNL.
http://neutrons.ornl.gov/facilities/SNS/works.shtml
2. Web site of J-PARC.
http://j-parc.jp/index-e.html
3. Y. Kadi, A. Herrera-Martinez. Multi-MW target
development for EURISOL & EUROTRANS Euro-
pean Organization for Nuclear Research // BENE
Week, CERN, Switzerland, March 16-19, 2005.
48V / 59Fe
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
0 2 4 6 8 10
Deuteron Energy
http://neutrons.ornl.gov/facilities/SNS/works.shtml
http://j-parc.jp/index-e.html
ISSN 1562-6016. ВАНТ. 2016. №3(103) 78
4. V.I. Yurevich, R.M. Yakovlev, V.G. Lyapin. The
study of neutron emission in the interaction of nuclei
1H, 2H, 4He, 12C, with energy of 1…2 AGeV with
lead nuclei // Nuclear Physics. 2006, v. 69, № 9,
p. 1531-1543.
5. V.I. Yurevich, R.M. Yakovlev, R.G. Vassilkov, et
al. Production and multiplication of neutrons in lead
targets induced by protons above 1 GeV // NIM.
2006, v. A562, p. 747-749.
6. M.Yu. Artiushenko, V.A. Voronko, K.V. Husak, et
al. Investigation of the spatial and energy distribu-
tions of neutrons in the massive uranium target irra-
diated by deuterons with energy of 1…8 GeV //
Problems of Atomic Science and Technology. Series
“Nuclear Physics Investigations”. 2013, № 6,
p. 170-174.
7. L. Zavorka, J. Adam, V.V. Sotnikov, et al. Neutron-
induced transmutation reactions in 237Np, 238Pu, and
239Pu at the massive natural uranium spallation tar-
get // NIM. 2015, v. B349, p. 31-38.
8. M. Artiushenko, V. Voronko, Yu. Petrusenko, et al.
Monitoring of high energy deuteron beams in the
experiments with massive targets // Problems of
Atomic Science and Technology. Series “Nuclear
Physics Investigations”. 2014, № 3, p. 186-189.
9. A.A. Safronava, A.A. Patapenka, V.V. Sotnikov, et
al. Monitoring of GeV Deuteron Beam Parameters
in ADS Experiments at the Nuclotron (JINR, Dub-
na) // Proc. of DIPAC2011, Hamburg, Germany,
May 2011, p. 530-532.
10. Web site of Experimental Nuclear Reaction Data
(EXFOR). https://www-nds.iaea.org/exfor/exfor.htm
11. Web site of TENDL-2014: TALYS-based evaluated
nuclear data library.
ftp://ftp.nrg.eu/pub/www/talys/tendl2014/tendl2014.
html
12. L. Yonghui, Y. Yi, F Jing, et al. Mass Distributions
of 22.0 MeV Neutron-induced Fission of 238U //
Communication of Nuclear Data Progress. 2001,
№ 26, p. 2-4.
Article received 25.02.2016
СРАВНЕНИЕ НЕЙТРОННО-ФИЗИЧЕСКИХ ХАРАКТЕРИСТИК УРАНОВОЙ МИШЕНИ
УСТАНОВКИ «КВИНТА» ПРИ ОБЛУЧЕНИИ РЕЛЯТИВИСТСКИМИ ДЕЙТРОНАМИ
И ЯДРАМИ
12
C
M.Ю. Артюшенко, А.А. Балдин, А.И. Берлев, В.В. Чилап, О. Далхажав, В.В. Сотников,
С.И. Тютюнников, В.А. Воронко, А.А. Жадан
Проблема утилизации отработанного ядерного топлива и ограниченность запасов сырья на сегодняшний
день являются двумя основными причинами, препятствующими широкомасштабному распространению
атомной энергетики. Одним из путей решения данных проблем является использование ядерных реляти-
вистских технологий, которые предлагают использование максимально жѐсткого спектра нейтронов в мас-
сивных мишенях из природного или обеднѐнного урана, облучаемых пучками релятивистских частиц высо-
ких энергий (2…10 ГэВ). Данная работа описывает исследование генерации нейтронов в протяжѐнной ми-
шени из природного урана (установка "КВИНТА", mU ~ 500 кг), облучаемой пучками релятивистских дей-
тронов и ядер 12С с энергиями 2 и 4 ГэВ/нукл. на ускорителе «Нуклотрон» (ОИЯИ, Дубна). С помощью ак-
тивационной методики были исследованы скорости реакций: natU(n,f), 238U(n,γ), 59Co(n,x). Проведено сравне-
ние полученных экспериментальных результатов в зависимости от энергии и вида налетающих частиц.
ПОРІВНЯННЯ НЕЙТРОННО-ФІЗИЧНИХ ХАРАКТЕРИСТИК УРАНОВОЇ МІШЕНІ УСТАНОВКИ
«КВІНТА» ПРИ ОПРОМІНЕННІ РЕЛЯТИВІСТСЬКИМИ ДЕЙТРОНАМИ ТА ЯДРАМИ
12
C
M.Ю. Артюшенко, А.А. Балдін, А.І. Берлєв, В.В. Чілап, О. Далхажав, В.В. Сотнiков, С.І. Тютюнников,
В.А. Воронко, А.А. Жадан
Проблема утилізації відпрацьованого ядерного палива та обмеженість запасів сировини на сьогоднішній
день є двома основними причинами, що перешкоджають широкомасштабному поширенню атомної енерге-
тики. Одним із шляхів вирішення даних проблем є використання ядерних релятивістських технологій, які
пропонують використання максимально жорсткого спектра нейтронів у масивних мішенях з природного або
збідненого урану, що опромінюються пучками релятивістських частинок високих енергій (2…10 ГеВ). Дана
робота описує дослідження генерації нейтронів у протяжній мішені з природного урану (установка
"КВІНТА", mU ~ 500 кг), яка опромінювалася пучками релятивістських дейтронів та ядер 12С з енергіями
2 та 4 ГеВ/нукл. на прискорювачі «Нуклотрон» (ОІЯД, Дубна). За допомогою активаційної методики були
досліджені швидкості реакцій: natU(n,f), 238U(n,γ), 59Co(n,x). Проведено порівняння отриманих експеримента-
льних результатів залежно від енергії та виду налітаючих частинок.
https://www-nds.iaea.org/exfor/exfor.htm
ftp://ftp.nrg.eu/pub/www/talys/tendl2014/tendl2014.html
ftp://ftp.nrg.eu/pub/www/talys/tendl2014/tendl2014.html
|