Macroparticles in beam-plasma systems

The macroparticle (MP) contamination is the most important technological problem of vacuum arc deposition of coatings. The results of theoretical study of MP charging and dynamics in the near-substrate sheath are presented. The charge and dynamics of MP are governed by local parameters of ion and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
Hauptverfasser: Bizyukov, A.A., Girka, I.O., Romashchenko, E.V., Chibisov, O.D.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2016
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/115448
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Macroparticles in beam-plasma systems / A.A. Bizyukov, I.О. Girka, E.V. Romashchenko, O.D. Chibisov // Вопросы атомной науки и техники. — 2016. — № 6. — С. 187-190. — Бібліогр.: 24 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-115448
record_format dspace
spelling irk-123456789-1154482017-04-05T03:02:20Z Macroparticles in beam-plasma systems Bizyukov, A.A. Girka, I.O. Romashchenko, E.V. Chibisov, O.D. Iter and fusion reactor aspects The macroparticle (MP) contamination is the most important technological problem of vacuum arc deposition of coatings. The results of theoretical study of MP charging and dynamics in the near-substrate sheath are presented. The charge and dynamics of MP are governed by local parameters of ion and secondary electron emission fluxes in the sheath. It is shown that the maximum possible velocity of repelled MP increases with increasing substrate bias voltage. The effect of substrate biasing is seen to be larger for MPs emitted at small angles to the cathode plane of arc evaporator. Наиболее важной технологической проблемой вакуумно-дугового осаждения покрытий является загрязне- ние макрочастицами (МЧ). Представлены результаты теоретического исследования зарядки и динамики МЧ в слое у подложки. Заряд и динамика МЧ определяются локальными параметрами ионных и электронных вторично-эмиссионных потоков в слое. Показано, что максимально возможная скорость отраженной МЧ возрастает с увеличением потенциала подложки. Эффект смещения потенциала подложки больше для МЧ, которые эмитируют под малыми углами к плоскости катода вакуумного испарителя. Найбільш важливою технологічною проблемою вакуумно-дугового осадження покриттів є забруднення ма- крочастинками (МЧ). Представлено результати теоретичного дослідження зарядки та динаміки МЧ у шарі біля підкладки. Заряд і динаміка МЧ визначаються локальними параметрами іонних та електронних вторин- но-емісійних потоків у шарі. Показано, що максимально можлива швидкість відбитої МЧ зростає зі збіль- шенням потенціалу підкладки. Ефект зсуву потенціалу підкладки більший для МЧ, які емітують під малими кутами к площині катоду вакуумного випарника. 2016 Article Macroparticles in beam-plasma systems / A.A. Bizyukov, I.О. Girka, E.V. Romashchenko, O.D. Chibisov // Вопросы атомной науки и техники. — 2016. — № 6. — С. 187-190. — Бібліогр.: 24 назв. — англ. 1562-6016 PACS: 52.40.Hf http://dspace.nbuv.gov.ua/handle/123456789/115448 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Iter and fusion reactor aspects
Iter and fusion reactor aspects
spellingShingle Iter and fusion reactor aspects
Iter and fusion reactor aspects
Bizyukov, A.A.
Girka, I.O.
Romashchenko, E.V.
Chibisov, O.D.
Macroparticles in beam-plasma systems
Вопросы атомной науки и техники
description The macroparticle (MP) contamination is the most important technological problem of vacuum arc deposition of coatings. The results of theoretical study of MP charging and dynamics in the near-substrate sheath are presented. The charge and dynamics of MP are governed by local parameters of ion and secondary electron emission fluxes in the sheath. It is shown that the maximum possible velocity of repelled MP increases with increasing substrate bias voltage. The effect of substrate biasing is seen to be larger for MPs emitted at small angles to the cathode plane of arc evaporator.
format Article
author Bizyukov, A.A.
Girka, I.O.
Romashchenko, E.V.
Chibisov, O.D.
author_facet Bizyukov, A.A.
Girka, I.O.
Romashchenko, E.V.
Chibisov, O.D.
author_sort Bizyukov, A.A.
title Macroparticles in beam-plasma systems
title_short Macroparticles in beam-plasma systems
title_full Macroparticles in beam-plasma systems
title_fullStr Macroparticles in beam-plasma systems
title_full_unstemmed Macroparticles in beam-plasma systems
title_sort macroparticles in beam-plasma systems
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2016
topic_facet Iter and fusion reactor aspects
url http://dspace.nbuv.gov.ua/handle/123456789/115448
citation_txt Macroparticles in beam-plasma systems / A.A. Bizyukov, I.О. Girka, E.V. Romashchenko, O.D. Chibisov // Вопросы атомной науки и техники. — 2016. — № 6. — С. 187-190. — Бібліогр.: 24 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT bizyukovaa macroparticlesinbeamplasmasystems
AT girkaio macroparticlesinbeamplasmasystems
AT romashchenkoev macroparticlesinbeamplasmasystems
AT chibisovod macroparticlesinbeamplasmasystems
first_indexed 2025-07-08T08:47:46Z
last_indexed 2025-07-08T08:47:46Z
_version_ 1837067893615886336
fulltext ISSN 1562-6016. ВАНТ. 2016. №6(106) PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2016, № 6. Series: Plasma Physics (22), p. 187-190. 187 MACROPARTICLES IN BEAM-PLASMA SYSTEMS A.A. Bizyukov, I.О. Girka, E.V. Romashchenko, O.D. Chibisov V.N. Karazin Kharkiv National University, Kharkov, Ukraine E-mail: ev.romashchenko@gmail.com The macroparticle (MP) contamination is the most important technological problem of vacuum arc deposition of coatings. The results of theoretical study of MP charging and dynamics in the near-substrate sheath are presented. The charge and dynamics of MP are governed by local parameters of ion and secondary electron emission fluxes in the sheath. It is shown that the maximum possible velocity of repelled MP increases with increasing substrate bias voltage. The effect of substrate biasing is seen to be larger for MPs emitted at small angles to the cathode plane of arc evaporator. PACS: 52.40.Hf INTRODUCTION One of the central concepts in plasma physics is that of the charging of macroparticle (MP) by surround- ing plasma. The charging process in the gaseous plas- mas has been well studied [1]. The MPs are charged by the collection of the plasma particles flowing onto their surfaces. Because of the high thermal velocity of the electrons compared to the ions, MPs are negatively charged. For beam-plasma systems, in addition to col- lecting thermal plasma particles, MPs are subjected to fluxes of beam particles. The presence of beams in sys- tems produces significant effect on dynamics of charging process. The energetic beams are not only intentionally introduced into plasma but energetic ion beams are also formed from a plasma by a set of extractor electrodes in vacuum arc deposition (VAD) systems to obtain layers of cathode material on substrate. The vacuum arc sources generate highly ionized metal plasma with multiply charged ions (MCIs) [2]. The mean ion charge state is 2…3 and typically higher for materials with high melting point. The ions have supersonic velocities, correspond- ing to ion energy in the range 20…200 eV, depending on the source material [3]. By applying negative high- voltage bias to the substrate, ions are extracted from the plasma, accelerated across the sheath and deposited into the surface [4]. A disadvantage of VAD is the emission of macroparticles (MPs) during arcing. MPs are general- ly molten metal droplets (sometimes solid) generated by the action of the cathode spots [5]. The MPs occur in the range of size from fraction to tens of microns. There is a strong dependence of MP production on the cathode material. The cathode erosion in the droplet phase de- creases with increasing cathode material melting tem- perature [6], but monotonic relationship between MP production and melting point of the different cathode materials could not be established. MPs and plasma fluxes are partially separated. The plasma flux is peaked in the direction of the normal to the cathode surface [7] whereas most of MPs produced by a steady vacuum arc leave the cathode at small angles to the cathode plane [8]. However, MP flux emitted in the direction of the normal to the cathode surface can still be large. The peak emission angle with respect to the cathode plane increases with decreasing MP size [6]. The incorpora- tion of MPs into the coating degrades the quality of the films, e.g. produces surface roughening, protuberances, bumps and pinholes [9]. MPs may constitute a consider- able fraction of the coatings mass. This substantially limits the possibilities of vacuum arc plasma in coating technologies. Thus, MP contamination is regarded as the most important technological problem. Several methods connected with different aspects of the MP process have been developed to eliminate MPs, such as magnetic filters [10], magnetically steered arc [11], sub- strate biasing [12], and nontraditional (hot refractory anode vacuum arc, shunting vacuum arc) [13]. Among these methods, the substrate biasing has been considered as a positive means in our previous study [14]. We have proposed a model of MP transport in vacuum arc sheath, and appreciable progress was made towards explaining the reduction of MPs which has been approached by substrate biasing. It is obtained that the use of substrate bias of -300 V may be capable of repelling MPs with a size less than 1 μm from the substrate at normal inci- dence of MPs. In the present work, we report further results on the accumulation of MPs on a negatively bi- ased substrate immersed in vacuum arc plasma using measured size and angular distributions of MPs [15]- [16]. 1. DISTRIBUTIONS OF MPS The size and angular distributions of MPs have been investigated by a number of authors [17-20] for a range of cathode material. Tuma et al. [18] obtained that copper MPs have a monotonically decreasing size dis- tribution, which has a maximum for MPs of diameter in the range 0..1 μm. Similar results for a variety of cath- ode material have been reported by Anders et al [20]. MPs have a peaked distribution which tailed off with increasing MP volume. Therefore, MPs with smaller volumes dominate the number density. MPs have a size distribution f(d) that can be de- scribed by a power law [9]  Addf )( , (1) where d is the MP diameter, and the parameters A and α are material dependent. This shape of size distribution f(d) follows from the fractal nature of cathode spot phe- nomena. MP size distribution f(d) can be represented by a straight line in log-log presentation as shown in Fig. 1. 188 ISSN 1562-6016. ВАНТ. 2016. №6(106) Fig. 1 demonstrates the MP size distribution f of Ti MP diameter d (in μm) normalized to the area (in mm 2 ) and time deposition (in s). MP sizes for Ti range up to 40 μm in the absence of background gas and 30 μm in the presence of nitrogen [15]. Fig. 1. MP size distribution for Ti, normalized as MP number per area and time deposition for pressures 10 -3 Pa (solid line) and 1Pa (dashed line). Experimental results were taken from Ref. [15] As one can see from the Fig. 2, the MP flux is peaked with a most probable angle below 30 0 with re- spect to the cathode plane in vacuum as well as in the presence of nitrogen. McClure [21] proposed theory which explains the emission of the MPs at the small angles to the cathode surface. The plasma expands from the cathode spots into the vacuum. In addition to the outward flow of ions, there is a back flow of ions accel- erated towards the liquid cathode surface of the arc spot. The back-streaming ions press inward on the molten metal. The plasma pressure is stronger in center than at the sides of the crater. Therefore, MPs are pushed to- wards the edge of the crater leading to the observed an- gular distribution. Fig. 2. MP angular distribution for Ti, normalized as MP volume per are and time deposition for different values of pressure: 1 – 10 -3 Pa; 2 – 0.1 Pa; 3 – 1 Pa [16] MODEL DESCRIPTION Let us consider a negatively biased substrate, im- mersed into vacuum arc produced plasma. Application of high negative bias Vb to the substrate leads to posi- tive sheath formation near the substrate. This is because the electrons are repelled from the substrate whereas ions are accelerated towards the substrate [22]. In our coordinate system a plama-sheath interface is taken to be the origin, x=0, and the position of the sub- strate is determined by the sheath thickness. The ions, hitting the substrate, may cause an electron emission. Because of the relatively low kinetic energy of the ions (below 1 keV), only the potential electron emission (PEE) is of importance in the vacuum arcs [9]. The flux of secondary electrons is accelerated away from the substrate in the sheath electric field that accel- erated flux of MCIs towards the substrate. To obtain potential distribution Ф(x) within the sheath one has to consider both particle fluxes to and from the substrate in Poisson’s equation          N k ek N k ik nnk e dx Фd 210 2 2  , (2) where ε0 is the permittivity constant, e is the elementary charge, k is the ion charge state number, nik is the individual ion densities of the k-th species, nek is the individual densities of secondary electrons produced by the ions of the k-th species. The boundary conditions for integration are Ф (0)=0; dФ/dx=0. The space charge of MPs is neglected (i. e., we assume that the MP number density to be small). The potential variation in the sheath can be found numerically by integration Eq. (2). We consider the MP with radius a as a spherical probe immersed in counter streams of ions and electrons where the directed particle velocity is much greater than the MP velocity [24]. The MP charge Q is one of the most important characteristics for the MP dynamics. The MP charge Q is determined by the MP potential with respect to the local sheath potential Vd )()( xСVxQ d , (3) where C is the capacitance of the MP. If the MP radius is much smaller than the Debye length λD the capaci- tance is   аaС D 00 414   , (4) where λD=( ε0Te /n0e 2 ) 1/2 . The MP charging time is shorter than the time of flight through the plasma sheath. We assume instanta- neous transfer of charge onto and off the MP at any MP position in the sheath. The steady-state potential to which a MP is charged is determined from the balance of particle currents to the grain ( 0dV )         0  deedeidedi VIVIVIVI , (5) where Ii is the ion current, Ie is the current of fast sec- ondary electrons emitted from the substrate, Ii-e is the secondary electron current from the MP surface caused by the impact of MCIs, Ie-e is the current of secondary electrons emitted from the MP surface due to fast elec- tron bombardment. We calculate the currents Ii and Ie to the MP sur- face by using the orbital motion limited (OML) ap- proach. μm/s ISSN 1562-6016. ВАНТ. 2016. №6(106) 189          N k iki d ik N k iki um keV jaII 1 2 2 1 2 1 , (6)          N k ee d ek N k eke um eV jaII 1 2 2 2 2 1 , (7) ik N k k N k keiei I k II     12 ,  , (8) eee II  ,          em e em e m Exp      24.7 , (9) where δ is the secondary electron yield [24]; jik is the current density of the ions of the k-th species, jek is the current density of secondary electrons produced by the ions of the k-th species; γk is a partial PEE yield , Iik =0, if 2keVd /mi uik 2 >1; and Ie =0, if 2eVd/meue 2 <1, mi (me ) is the ion (electron) mass, uik is the velocity of each ion species in the sheath, ue is the velocity of sec- ondary electrons. Electrostatic repulsion of MPs should occur if the potential energy exceeds the kinetic energy 2)( 2 npot MVxU  , (10) where Upot = Q(x)Ф(x), is the potential energy of MP at the local sheath position Vn is the velocity component normal to the substrate (Vn=Vp sinθ, where Vp is the MP velocity, θ is the angle with the respect to the cathode plane). Repulsion criterion (10) is recast as   212 0 sin)()(6  xxVaV dp  . (11) While we do not know of any detailed measurements of both velocity Vn and radius a, the analysis of inequality can provide an answer to the question whether MP with given radius may be reflected from a substrate. We can find dependence of the MP critical velocity as a func- tion of MP position for different angles. It says that MP with a given radius must penetrate through the sheath region with a velocity greater than the critical velocity. 3. RESULTS AND DISCUSSION The numerical calculations were carried out for ti- tanium ions, bombarding a negatively biased titanium substrate. The specific plasma parameters and energy of ions have been taken as typical values from experi- ments: the electron temperature Te =1 eV, the plasma bulk density n=10 16 m -3 , mean initial kinetic energy of ions εi =54 eV, mean ion charge Z=1.98, Ie/Ii=1.3. We consider, as an example, MP with radius 0.25 μm. Numerical solutions of set of Eqs. (2)-(9), (11) allow to determine MP critical velocity as a function of MP position z for different angles. MP critical velocities for substrate bias -100 V, -200 V, -300 V are shown in Fig. 3. The maximum pos- sible velocity of repelled MP is defined by a maximum of curves. The critical velocity increases with substrate bias voltage (see Figs. 3,a,c). It may be seen from Fig. 3,a, for substrate bias Vb=-100 V, all MPs with velocity 20 m/s reach the substrate. MPs moving at an- gle θ=30 0 to the cathode plane reach the substrate at substrate bias Vb= -100 V with velocity 20 m/s (see Fig. 3,a), whereas they become closer to the substrate with such velocity at Vb= -200 V (see Fig. 3,b). Fig. 3. The dependence of the critical velocity of the MP radius with radius 0.25 μm on its position z for differ- ent angles and substrate biases: (a) Vb=-100 V; (b) Vb=-200 V; (c) Vb=-300 V. The curves correspond to θ=90 0 (solid line), θ=60 0 (dashed line); θ=30 0 (dotted line) MPs with radius 0.25 μm and velocity 20 m/s emit- ted in the direction of the normal to the cathode surface can be eliminated using substrate bias Vb=-300V(see Fig. 3,c). CONCLUSIONS The numerical results of MP content in films de- posited by a titanium vacuum arc for different substrate bias voltage and MP flight angle with respect to the cathode surface have been presented. Substrate bias voltage and cathode-to-substrate ge- ometry are the key factors that influence the density of MPs. The effect of substrate biasing is larger for MPs emitted at small angles to the cathode plane than for a b c 190 ISSN 1562-6016. ВАНТ. 2016. №6(106) MPs emitted in the direction of the normal to the cath- ode surface. As most of MPs produced by a steady vac- uum arc leave the cathode at small angles to the cathode plane, the substrate biasing is the effective method to reduce MP contaminations of the coatings. REFERENCES 1. P.K. Shucla, A. Mamun. Introduction to Dusty Plas- ma Physics. Bristol: “IOP Publishing”, 2002. 2. J.G. Brown, J.E. Galvin, R.A. MacGill, M.W. West. Multiply charged ion beams // Nuclear. Instrum. and Methods in Physics Research. 1989, v. 43, № 3, p. 455- 458. 3. G.Yu. Yushkov. Ion velocities in vacuum arc plasmas // J. Appl. Phys. 2000, v. 88, № 10, p. 5618-5622. 4. J.G. Brown. Vacuum arc ion sources // Rev. Sci. In- strum. 1994, v. 65, p. 3061-3081. 5. J.E. Daalder. Components of cathode erosion in vac- uum arcs // J. Phys. D: Appl. Phys. 1976, v. 9, p. 2379- 2395. 6. R.L. Boxman, S. Goldsmith. Macroparticle contami- nation in cathodic arc coatings: generation, transport and control // Surf. Coat. Thechnol. 1992, v. 52, p. 39- 50. 7. A.A. Plyutto, Y.N. Ryzhkov, and A.T. Kapin. High speed plasma streams in vacuum arc // Sov. Phys. JETP. 1965, v. 20, № 2, p. 328-337. 8. I.I. Aksenov, I.I. Konovalov, et al. Droplete phase of cathode erosion in a steady state vacuum arc // Sov. Phys. Thech. 1984, v. 29, p. 893-894. 9. A. Anders. Cathodic Arcs: From Fractal Spots to Energetic Condensation. New York: “Springer”, 2008. 10. I.I. Beilis, M. Keidar, R.L. Boxman, S. Goldsmith. Macroparticle separation and plasma collimation in positively biased ducts in filtered vacuum arc deposition systems // J. Appl. Phys. 1999, v. 88, p. 1358-1365. 11. P.D. Swift. Macroparticles in films deposited by steered cathodic arc // J. Phys. D. Appl. Phys. 1996, v. 29, p. 2025-2031. 12. C.N. Tai, E.S. Koh, and K. Akari. Macroparticles on TiN films prepared by the arc ion plating process // Surf. Coat. Thechnol. 1990, v. 43/44, p. 324-335. 13. D.S. Aksenov, I.I. Aksenov, V.E. Strel’nitskij. Sup- pression of macroparticle emission in vacuum arc plasma sources // Problems of Atomic Science and Technology. 2007, v. 6, p. 106-115. 14. A.A. Bizyukov, I.O. Girka, E.V. Romashchenko. Transport of a macroparticle in vacuum arc sheath // IEEE Trans. Plasma Sci. 2016, v. 44, № 7, p. 1050- 1056. 15. I.I. Aksenov, A.A. Andreev, et al. Vacuum Arc: plasma sources, coating deposition, surface modifica- tion. Kiev: “Naukova Dumka”, 2012 (in Russian). 16. V.M. Khoroshikh. The droplete phase of cathode erosion in steady-state vacuum arc // PSE. 2004, v. 2, № 4, p. 200-213. 17. T. Utsumi and J.H. English. Study of electrode products emitted by vacuum arcs in form of molten metal particles // J. Appl. Phys. 1975, v. 46, p. 126-131. 18. D.T. Tuma, C.L. Chen and D.K. Davies. Erosion products from the cathode spot region of a copper vacu- um arc // J. Appl. Phys. 1978, v. 49, № 7, p. 3821-3831. 19. S. Shalev, R.L. Boxman, and S. Goldsmith. Veloci- ties and emission rates of cathode-produced molyb- denum macroparticles in a vacuum arc // J. Appl. Phys. 1985, v . 58, p. 2503-2507. 20. S. Anders, A. Anders, et al. On the macroparticle flux from vacuum arc cathode spots // IEEE Trans. Plasma Sci. 1993, v. 21, № 5, p. 440-446. 21. G.W. McClure. Plasma expansion as a cause of metal displacement in vacuum arc cathode spot // J. Appl. Phys. 1974, v. 45(5), p. 2078-2984. 22. I. Langmuir. Collected Works of Irving Langmuir / Ed. by G. Suits. New York: “Pergamon”, 1961. 24. E.J. Sternglass. The theory of secondary electron emission. Westinghouse: “Res. Lab. Sci. Pap”, 1972. Article received 29.09.2016 МАКРОЧАСТИЦЫ В ПУЧКОВО-ПЛАЗМЕННЫХ СИСТЕМАХ А.А. Бизюков, И.А. Гирка, Е.В. Ромащенко, А.Д. Чибисов Наиболее важной технологической проблемой вакуумно-дугового осаждения покрытий является загрязне- ние макрочастицами (МЧ). Представлены результаты теоретического исследования зарядки и динамики МЧ в слое у подложки. Заряд и динамика МЧ определяются локальными параметрами ионных и электронных вторично-эмиссионных потоков в слое. Показано, что максимально возможная скорость отраженной МЧ возрастает с увеличением потенциала подложки. Эффект смещения потенциала подложки больше для МЧ, которые эмитируют под малыми углами к плоскости катода вакуумного испарителя. МАКРОЧАСТИНКИ В ПУЧКОВО-ПЛАЗМОВИХ СИСТЕМАХ О.А. Бізюков, I.О. Гірка, О.В. Ромащенко, О.Д. Чібісов Найбільш важливою технологічною проблемою вакуумно-дугового осадження покриттів є забруднення ма- крочастинками (МЧ). Представлено результати теоретичного дослідження зарядки та динаміки МЧ у шарі біля підкладки. Заряд і динаміка МЧ визначаються локальними параметрами іонних та електронних вторин- но-емісійних потоків у шарі. Показано, що максимально можлива швидкість відбитої МЧ зростає зі збіль- шенням потенціалу підкладки. Ефект зсуву потенціалу підкладки більший для МЧ, які емітують під малими кутами к площині катоду вакуумного випарника.