Investigations of thermal plasma of electric arc discharge between composite Ag–C electrodes
The complex investigation of the arc discharge plasma between composite Ag–C electrodes in the range of 3.5 A…30 A currents was carried out. Plasma temperature in assumption of local thermodynamic equilibrium was obtained by optical emission spectroscopy. Electron densities were obtained from half...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2016
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/115525 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Investigations of thermal plasma of electric arc discharge between composite Ag–C electrodes / A.N. Veklich, S.O. Fesenko, M.M. Kleshich, V.F. Boretskij, Y. Cressault, Ph. Teulet // Вопросы атомной науки и техники. — 2016. — № 6. — С. 207-210. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-115525 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1155252017-04-07T03:02:37Z Investigations of thermal plasma of electric arc discharge between composite Ag–C electrodes Veklich, A.N. Fesenko, S.O. Kleshich, M.M. Boretskij, V.F. Cressault, Y. Teulet, Ph. Low temperature plasma and plasma technologies The complex investigation of the arc discharge plasma between composite Ag–C electrodes in the range of 3.5 A…30 A currents was carried out. Plasma temperature in assumption of local thermodynamic equilibrium was obtained by optical emission spectroscopy. Electron densities were obtained from half-width of Ag I 466.8 nm spectral line in the assumption of dominating quadratic Stark effect emitted by plasma at arc current 30 A. Electrical conductivity and electron density in arc discharge plasma at current 3.5 A were obtained by solution of the energy balance equation. The results of investigations of plasma arc discharge between Ag–C electrodes were compared with parameters of discharge plasma between C–Cu electrodes at arc current 3.5 A. Выполнено комплексное исследование плазмы электродугового разряда между композитными Ag–C электродами в диапазоне токов 3,5…30 A. Методом оптической эмиссионной спектроскопии определена температура плазмы в предположении локального термодинамического равновесия. Электронная концентрация плазмы электродугового разряда силой тока 30 A определена по уширению спектральной линии Ag I 466,8 нм. Электропроводность и электронная концентрация плазмы дугового разряда силой тока 3,5 A определены путем решения уравнения энергетического баланса. Результаты исследований плазмы дугового разряда силой тока 3,5 А между Ag–C электродами сравнивались с параметрами плазмы разряда между C–Cu электродами. Виконано комплексне дослідження плазми електродугового розряду між композитними Ag–C електро- дами в діапазоні струмів 3,5…30 A. Методом оптичної емісійної спектроскопії визначено температуру плаз- ми у припущенні локальної термодинамічної рівноваги. Електронна концентрація плазми електродугового розряду силою струму 30 A визначена із ширини спектральної лінії Ag I 466,8 нм. Електропровідність та електронна концентрація плазми дугового розряду силою струму 3,5 A визначені шляхом розв’язку рівняння енергетичного балансу. Результати досліджень плазми дугового розряду силою струму 3,5 А між Ag–C електродами порівнювались з параметрами плазми розряду між C–Cu електродами. 2016 Article Investigations of thermal plasma of electric arc discharge between composite Ag–C electrodes / A.N. Veklich, S.O. Fesenko, M.M. Kleshich, V.F. Boretskij, Y. Cressault, Ph. Teulet // Вопросы атомной науки и техники. — 2016. — № 6. — С. 207-210. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS: 52.70.-m, 52.70.Ds, 52.80.Mg http://dspace.nbuv.gov.ua/handle/123456789/115525 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies |
spellingShingle |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies Veklich, A.N. Fesenko, S.O. Kleshich, M.M. Boretskij, V.F. Cressault, Y. Teulet, Ph. Investigations of thermal plasma of electric arc discharge between composite Ag–C electrodes Вопросы атомной науки и техники |
description |
The complex investigation of the arc discharge plasma between composite Ag–C electrodes in the range of
3.5 A…30 A currents was carried out. Plasma temperature in assumption of local thermodynamic equilibrium was
obtained by optical emission spectroscopy. Electron densities were obtained from half-width of Ag I 466.8 nm
spectral line in the assumption of dominating quadratic Stark effect emitted by plasma at arc current 30 A. Electrical
conductivity and electron density in arc discharge plasma at current 3.5 A were obtained by solution of the energy
balance equation. The results of investigations of plasma arc discharge between Ag–C electrodes were compared
with parameters of discharge plasma between C–Cu electrodes at arc current 3.5 A. |
format |
Article |
author |
Veklich, A.N. Fesenko, S.O. Kleshich, M.M. Boretskij, V.F. Cressault, Y. Teulet, Ph. |
author_facet |
Veklich, A.N. Fesenko, S.O. Kleshich, M.M. Boretskij, V.F. Cressault, Y. Teulet, Ph. |
author_sort |
Veklich, A.N. |
title |
Investigations of thermal plasma of electric arc discharge between composite Ag–C electrodes |
title_short |
Investigations of thermal plasma of electric arc discharge between composite Ag–C electrodes |
title_full |
Investigations of thermal plasma of electric arc discharge between composite Ag–C electrodes |
title_fullStr |
Investigations of thermal plasma of electric arc discharge between composite Ag–C electrodes |
title_full_unstemmed |
Investigations of thermal plasma of electric arc discharge between composite Ag–C electrodes |
title_sort |
investigations of thermal plasma of electric arc discharge between composite ag–c electrodes |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2016 |
topic_facet |
Low temperature plasma and plasma technologies |
url |
http://dspace.nbuv.gov.ua/handle/123456789/115525 |
citation_txt |
Investigations of thermal plasma of electric arc discharge between composite Ag–C
electrodes / A.N. Veklich, S.O. Fesenko, M.M. Kleshich, V.F. Boretskij, Y. Cressault, Ph. Teulet // Вопросы атомной науки и техники. — 2016. — № 6. — С. 207-210. — Бібліогр.: 7 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT veklichan investigationsofthermalplasmaofelectricarcdischargebetweencompositeagcelectrodes AT fesenkoso investigationsofthermalplasmaofelectricarcdischargebetweencompositeagcelectrodes AT kleshichmm investigationsofthermalplasmaofelectricarcdischargebetweencompositeagcelectrodes AT boretskijvf investigationsofthermalplasmaofelectricarcdischargebetweencompositeagcelectrodes AT cressaulty investigationsofthermalplasmaofelectricarcdischargebetweencompositeagcelectrodes AT teuletph investigationsofthermalplasmaofelectricarcdischargebetweencompositeagcelectrodes |
first_indexed |
2025-07-08T08:57:31Z |
last_indexed |
2025-07-08T08:57:31Z |
_version_ |
1837068507174404096 |
fulltext |
ISSN 1562-6016. ВАНТ. 2016. №6(106)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2016, № 6. Series: Plasma Physics (22), p. 207-210. 207
INVESTIGATIONS OF THERMAL PLASMA OF ELECTRIC ARC
DISCHARGE BETWEEN COMPOSITE Ag–C ELECTRODES
A.N. Veklich
1
, S.O. Fesenko
1
, M.M. Kleshich
1
, V.F. Boretskij
1
, Y. Cressault
2
, Ph. Teulet
2
1
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine;
2
Université de Toulouse; UPS, INPT; LAPLACE, France
E-mail: van@univ.kiev.ua
The complex investigation of the arc discharge plasma between composite Ag–C electrodes in the range of
3.5 A…30 A currents was carried out. Plasma temperature in assumption of local thermodynamic equilibrium was
obtained by optical emission spectroscopy. Electron densities were obtained from half-width of Ag I 466.8 nm
spectral line in the assumption of dominating quadratic Stark effect emitted by plasma at arc current 30 A. Electrical
conductivity and electron density in arc discharge plasma at current 3.5 A were obtained by solution of the energy
balance equation. The results of investigations of plasma arc discharge between Ag–C electrodes were compared
with parameters of discharge plasma between C–Cu electrodes at arc current 3.5 A.
PACS: 52.70.-m, 52.70.Ds, 52.80.Mg
INTRODUCTION
It is well known, that powerful semiconductor
electronics modules for large currents and voltages
switching, as an alternative to mechanical contactors,
are widely used. However, mechanical contactors are
still used in electrical industry because of their
simplicity, relatively low cost, significant resistivity to
current and voltage overload, etc. In addition, sliding
(mechanical) electrical contact still has no alternative
for usage in electric vehicles [1].
On the other hand, it is known, that there is a short-
time arc between contact groups occurs during
switching of electric circuit with inductance. A similar
situation is observed in the case of sliding contacts. This
arc phenomenon is accompanied by erosion of material
contact, which reduces the reliability and operating life
of switching device. Investigations of parameters and
state of arc discharge plasma with electrode vapour
impurities will enable to understood better the erosion
characteristics of the contacts. Moreover, it can be
possible to develop specific recommendations for
improving of the composition material. Such complex
investigations of arc discharge plasma between
composite C–Cu (80:20%) electrodes were carried out
in [2]. This composite material was specially developed
for sliding contact production for electric vehicle. The
breaking arc discharge between contact pairs is often
realised during vehicle movement. It was found by that
the basic properties of such discharge plasma are
defined wholly by vapours of electrodes' fusible
components (copper, in this case).
Composite Ag–C (95:5 %) material is also used to
produce the contacts of mechanical contactors. Silver in
this composite material was used to provide necessary
electrical conductivity of the contact. A small admixture
of graphite prevents the welding phenomena of the
contact group during circuit switching. Nevertheless,
composite Ag–C material is widely used in low voltage
contactors, there is no detail investigation of plasma
properties of arc discharge, which occurs during
switching between such composite electrodes, yet.
The aim of this study is the determination of
parameters of arc discharge plasma between composite
Ag–C electrodes. This study will be focused on the
temperature, electric field strength, conductivity and
electron density determination in such arc plasma. The
results will be compared with plasma parameters of arc
between composite C–Cu electrodes.
1. EXPERIMENTAL INVESTIGATIONS
1.1. ARC DISCHARGE ARRANGEMENT
The free burning electric arc was ignited in air
between the end surfaces of Ag–C (95:5%) composite
non-cooled vertically arranged electrodes. The diameter
of the rod electrodes was 6 mm, the discharge gap was
8 mm and arc current was in a range 3.5 A…30 A. To
avoid the metal droplet appearing a pulsing high current
mode was used: namely, the rectangular current pulse
up to 30 A was put on the "duty" low-current (3.5 A)
discharge. The duration of this high-current pulse was
of 30 ms. The registration of arc plasma radiation was
performed at 7 ms after current pulse rise when a
steady-state mode of electric arc discharge was realized.
A more detail description of experimental setup is
presented in [3, 4].
1.2. TEMPERATURE MEASUREMENTS
Plasma temperatures were obtained by Boltzmann
plot method [4]. Spectral lines Ag I 405.5, 447.6, 466.8,
520.9, 768.8 and 827.4 nm were used in the
determination of plasma temperature of arc discharge
between Ag–C electrodes [4]. Spectral lines of Cu I
510.5, 515.3, 521.8, 570.0 and 578.2 nm were used in
plasma temperature measurements in case of arc
discharge between C–Cu electrodes [2].
1.3. ELECTRON DENSITY MEASUREMENTS
Electron densities were obtained from the half-width
of spectral line Ag I 466.8 nm in an assumption of
dominating quadratic Stark effect at arc current 30 A
[4]. The spectral device, combined with Fabry–Perot
mailto:van@univ.kiev.ua
208 ISSN 1562-6016. ВАНТ. 2016. №6(106)
interferometer in etalon mode, was used for registration
of spectral line profiles [5] with spatial resolution.
1.4. ELECTRIC FIELD MEASUREMENTS
The determination of electric field in the positive
column of arc was performed by technique based on
modulation of discharge gap [6]. Interelectrode distance
was varied periodically with a frequency of 25 Hz using
a specially designed device (so called, electromechanical
modulator). Consequently, the arc voltage contains the
harmonics of frequency of 25 Hz. The amplitude of the
first harmonic can be used to determine the electric field
in the positive column of arc discharge plasma. The
bandpass filter and the second-order discrete Fourier
transform were used for measuring of this first harmonic
amplitude. This technique allows measuring the electric
field in real time mode.
1.5. CONDUCTIVITY AND ELECTRON DENSITY
CALCULATION
The solution of energy balance equation is used to
calculate the conductivity and the electron density of arc
discharge plasma [2]. This method requires to determine
preliminary the radial temperature distribution and the
electric field in positive column of the arc discharge plasma.
2. RESULTS AND DISCUSSION
At the preliminary stage the radial temperature
distributions in the range of 3.5 A…30 A currents were
defined (Fig. 1). One can see, the increasing of current
up to 10 A causes the expected rising of temperature at
the arc axis and appropriate rising of arc channel width.
Fig. 1. Radial distributions of plasma temperature of
arc between Ag–C electrodes
However, the further consistent increasing of arc
current up to 20 A and 30 A causes the decreasing of
temperature at the arc axis, although the arc channel is
expanding. Such kind behavior of temperature is
inherent to plasma of arc between Ag–C electrodes
only. The explanation of this phenomenon, of course,
requires further investigation.
The interferogram of Ag I 466.8 nm spectral line for
the discharge current 30 A is shown in Fig. 2. It was
noted previously, this spectral line is broadened mainly
due to the quadratic Stark effect. The width of spectral
line in different radial points was defined from this
interferogram. The radial distribution of electron
density, calculated from the width of this spectral line,
is shown in Fig. 3. Unfortunately, this method can not
be used to determine the electron density in plasma of
arc discharge at arc current 3.5 A. This is because the
width of the spectral line Ag I 466.8 nm is comparable
with the instrumental contour of Fabry–Perot etalon. In
addition, the radiation intensity of plasma was not
sufficient for interferogram registration in this case.
Fig. 2. The interferogram of spectral line AgI 466.8 nm,
emitted by plasma at current 30 A
Fig. 3. Electron density of electric arc discharge
between Ag–C electrodes at current 30 A
Therefore, the another kind technique to determine
the plasma electron density in the arc discharge of 3.5 A
between Ag–C electrodes was used. Namely, this
parameter was determined by solution of the energy
balance equation. Necessary for this method an electric
field of positive column of arc was determined by
modulation of interelectrode gap. The time dependence
of this field is shown in Fig. 4. The field strength
decreases and electric discharge tends to a steady state
during 25 s after ignition of discharge. It is apparently
this phenomenon is due to formation of oxides on the
cathode surface. The value of electric field of
approximately 3 V/mm is stable during the next time
range of 75 s. Therefore, this value was used to solve
the energy balance equation. The electric field starts to
decrease again at the time point t=100 s. It is apparently
such decreasing can be caused by a significant cathode
melting and consequently increasing of metal vapour in
the gap.
ISSN 1562-6016. ВАНТ. 2016. №6(106) 209
Fig. 4. Electric field in plasma of arc discharge between
composite Ag–C electrodes at current 3.5 A
The radial temperature profiles in arc discharge
plasma at 3.5 A current between Ag–C and, for
comparison, C–Cu electrodes are shown in Fig. 5. These
temperature distributions (T) are accompanied by
appropriate curves of upper (Tsup) and lower (Tinf) limits
of measurement error. One can see that plasma
temperature in arc between Ag–C electrodes is lower,
but its gradient is higher than in discharge between
C–Cu electrodes.
Fig. 5. Radial temperature profiles of electric arc
between Ag–C and C–Cu electrodes at current 3.5 A
Fig. 6. Thermal conductivity of electric arc discharge
between Ag–C and C–Cu electrodes at current 3.5 A
The thermal conductivity of atmospheric pressure
plasma weakly depends on a concentration of the
electrode material vapour according to the results of [7].
Therefore, the thermal conductivity of pure air was used
in solving of the energy balance equation. The radial
distributions of thermal conductivity of the arc
discharge plasma between Ag–C and C–Cu electrodes
are shown in Fig. 6. They correspond to those spatial
temperature distributions, which are shown in Fig. 5.
Radial distribution of thermal conductivity is non-
monotone for the case of Ag–C electrodes. This
phenomenon can be explained by the maximum of the
reactive component of the thermal conductivity in the
point of the temperature T=3600 K due to the
dissociation of oxygen.
At the next stage, the electrical conductivity of
plasma was determined by a solution of the energy
balance equation on the base of experimentally obtained
temperature distributions (Fig. 5) and the thermal
conductivity (Fig. 6) in plasma. Because of non-
monotone behaviour of the thermal conductivity, the
radial distribution of electrical conductivity has also the
non-monotone region as a result of solution of energy
balance equation (Fig. 7). That is why, the electron
density distribution, obtained from the electrical
conductivity, has also non-monotonic region in case of
Ag-C electrodes (Fig. 8).
Fig. 7. Conductivity of electric arc discharge between
Ag–C and C–Cu electrodes at current 3.5 A
Fig. 8 Electron density in plasma of arc discharge
between Ag–C and C–Cu electrodes at current 3.5 A
210 ISSN 1562-6016. ВАНТ. 2016. №6(106)
CONCLUSIONS
The technique of electric field measuring of arc
discharge plasma in real time mode by modulating of
gap length was developed. Obtained in such a way
values of electric field allowed to calculate the
conductivity and, respectively, the electron density in
plasma by solution of energy balance equation. It was
found that electron densities in plasma of arc discharges
between Ag–C and C–Cu are comparable. The
calculated value of electron density of arc discharge
between Ag–C electrodes for arc current 3.5 A has
minimum at distance from the arc axis r = 1.2 mm,
which can be explained by extremum of reactive
component of the thermal conductivity owing to
dissociation of molecule O2 at the temperature
T=3600 K.
ACKNOWLEDGEMENTS
This work was supported by joined project
“Dnipro” in the frame of research and technology col-
laboration between Ukraine and France. The authors
wish to thank Dr. Kryachko L.A. for valuable help in
the preparation of this article.
REFERENCES
1. V.Ya. Berent, S.A. Gnezdilov. Improvement of
performance of current collectors on the carbon base //
Friction & Lubrication in machines and mechanisms.
2009, v. 2, p. 18-23.
2. A. Veklich, S. Fesenko, V. Boretskij, Y. Cressault,
A. Gleizes, Ph. Teulet, Y. Bondarenko, L. Kryachko.
Thermal plasma of electric arc discharge in air between
composite Cu–C electrodes
// Problems of Atomic
Science and Technology. Series: "Plasma Physics".
2014, № 6 (20), p. 226-229.
3. R.V. Semenyshyn, A.N. Veklich, I.L. Babich,
V.F. Boretskij. Spectroscopy peculiarities of thermal
plasma of electric arc discharge between electrodes with
Zn admixtures // Advances in Space Research. 2014,
v. 54, p. 1235-1241.
4. I.L. Babich, V.F. Boretskij, A.N. Veklich,
R.V. Semenyshyn. Spectroscopic data and Stark
broadening of Cu I and Ag I spectral lines: Selection
and analysis // Advances in Space Research. 2014,
v. 54, p. 1254-1263.
5. A.N. Veklich, V.Ye. Osidach. The determination of
electron density in electric arc discharge plasma //
Bulletin of Taras Shevchenko National University of
Kyiv. Series: "Physics & Mathematics". 2004, v. 2,
p. 428-435.
6. A.N. Veklich, S.O. Fesenko, V.F. Boretskij,
M.M. Kleshich. Measuring of the electric field of a
positive column in arc discharges // XI International
Scientific Conference “Electronics and Applied
Physics”. Taras Shevchenko National University of
Kiev. Faculty of Radio Physics and Computer Systems.
Kyiv, Ukraine. October, 21-24, 2015, p. 149-150.
7. V.F. Boretskij, Y. Cressault, Ph. Teulet,
A.N. Veklich. Plasma of electric arc discharge in carbon
dioxide with copper vapours // XIX th Symposium on
Physics of Switching Arc (FSO 2011). Brno, Czech
Republic. September, 5-9, 2011, p. 121-124.
Article received 15.09.2016
ИССЛЕДОВAНИЕ ТЕРМИЧЕСКОЙ ПЛAЗМЫ ЭЛЕКТРОДУГОВОГО РАЗРЯДA
МЕЖДУ КОМПОЗИТНЫМИ Ag–C ЭЛЕКТРОДAМИ
A.Н. Веклич, С.A. Фесенко, М.М. Клешич, В.Ф. Борецкий, Я. Крессо, Ф. Тэлье
Выполнено комплексное исследование плазмы электродугового разряда между композитными Ag–C
электродами в диапазоне токов 3,5…30 A. Методом оптической эмиссионной спектроскопии определена
температура плазмы в предположении локального термодинамического равновесия. Электронная
концентрация плазмы электродугового разряда силой тока 30 A определена по уширению спектральной
линии Ag I 466,8 нм. Электропроводность и электронная концентрация плазмы дугового разряда силой тока
3,5 A определены путем решения уравнения энергетического баланса. Результаты исследований плазмы
дугового разряда силой тока 3,5 А между Ag–C электродами сравнивались с параметрами плазмы разряда
между C–Cu электродами.
ДОСЛІДЖЕННЯ ТЕРМІЧНОЇ ПЛAЗМИ ЕЛЕКТРОДУГОВОГО РОЗРЯДУ
МІЖ КОМПОЗИТНИМИ Ag–C ЕЛЕКТРОДAМИ
A.М. Веклич, С.О. Фесенко, М.М. Клешич, В.Ф. Борецький, Я. Крессо, Ф. Тельє
Виконано комплексне дослідження плазми електродугового розряду між композитними Ag–C електро-
дами в діапазоні струмів 3,5…30 A. Методом оптичної емісійної спектроскопії визначено температуру плаз-
ми у припущенні локальної термодинамічної рівноваги. Електронна концентрація плазми електродугового
розряду силою струму 30 A визначена із ширини спектральної лінії Ag I 466,8 нм. Електропровідність та
електронна концентрація плазми дугового розряду силою струму 3,5 A визначені шляхом розв’язку рівняння
енергетичного балансу. Результати досліджень плазми дугового розряду силою струму 3,5 А між
Ag–C електродами порівнювались з параметрами плазми розряду між C–Cu електродами.
|