Вариант экстраградиентного алгоритма для монотонных вариационных неравенств

Предлагается новый итерационный алгоритм решения вариационного неравенства с монотонным и липшицевым оператором, действующим в гильбертовом пространстве. Алгоритм основан на двух известных методах: алгоритме Попова и так называемом субградиентном экстраградиентном алгоритме. Привлекательной чертой а...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Малицкий, Ю.В., Семенов, В.В.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2014
Назва видання:Кибернетика и системный анализ
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/115781
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Вариант экстраградиентного алгоритма для монотонных вариационных неравенств / Ю.В. Малицкий, В.В. Семенов // Кибернетика и системный анализ. — 2014. — Т. 50, № 2. — С. 125-131. — Бібліогр.: 35 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-115781
record_format dspace
spelling irk-123456789-1157812017-04-13T03:02:28Z Вариант экстраградиентного алгоритма для монотонных вариационных неравенств Малицкий, Ю.В. Семенов, В.В. Системный анализ Предлагается новый итерационный алгоритм решения вариационного неравенства с монотонным и липшицевым оператором, действующим в гильбертовом пространстве. Алгоритм основан на двух известных методах: алгоритме Попова и так называемом субградиентном экстраградиентном алгоритме. Привлекательной чертой алгоритма является вычисление только одного значения оператора неравенства и одной проекции на допустимое множество при выполнении итерационного шага. Доказана теорема о слабой сходимости для последовательностей, порожденных предложенным алгоритмом. Запропоновано новий ітераційний алгоритм розв’язання варіаційних нерівностей із монотонним та ліпшицевим оператором, що діє в гільбертовому просторі. Алгоритм ґрунтується на двох відомих методах: алгоритмі Попова і так званому субґрадієнтному екстраґрадієнтному алгоритмі. Привабливою рисою алгоритму є обчислення лише одного значення оператора нерівності і однієї проекції на допустиму множину при виконанні ітераційного кроку. Доведено теорему про слабку збіжність для послідовностей, що породжуються запропонованим алгоритмом. We propose a new iterative algorithm to solve the variational inequality problem with monotone and Lipschitz continuous mapping in Hilbert space. It is based on two well-known methods: Popov’s algorithm and so-called subgradient extragradient algorithm. An advantage of the algorithm is the computation of only one value of the inequality mapping and one projection onto the feasible set at one iteration. We prove the weak convergence of the sequences generated by the proposed algorithm. 2014 Article Вариант экстраградиентного алгоритма для монотонных вариационных неравенств / Ю.В. Малицкий, В.В. Семенов // Кибернетика и системный анализ. — 2014. — Т. 50, № 2. — С. 125-131. — Бібліогр.: 35 назв. — рос. http://dspace.nbuv.gov.ua/handle/123456789/115781 517.988 ru Кибернетика и системный анализ Інститут кібернетики ім. В.М. Глушкова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Russian
topic Системный анализ
Системный анализ
spellingShingle Системный анализ
Системный анализ
Малицкий, Ю.В.
Семенов, В.В.
Вариант экстраградиентного алгоритма для монотонных вариационных неравенств
Кибернетика и системный анализ
description Предлагается новый итерационный алгоритм решения вариационного неравенства с монотонным и липшицевым оператором, действующим в гильбертовом пространстве. Алгоритм основан на двух известных методах: алгоритме Попова и так называемом субградиентном экстраградиентном алгоритме. Привлекательной чертой алгоритма является вычисление только одного значения оператора неравенства и одной проекции на допустимое множество при выполнении итерационного шага. Доказана теорема о слабой сходимости для последовательностей, порожденных предложенным алгоритмом.
format Article
author Малицкий, Ю.В.
Семенов, В.В.
author_facet Малицкий, Ю.В.
Семенов, В.В.
author_sort Малицкий, Ю.В.
title Вариант экстраградиентного алгоритма для монотонных вариационных неравенств
title_short Вариант экстраградиентного алгоритма для монотонных вариационных неравенств
title_full Вариант экстраградиентного алгоритма для монотонных вариационных неравенств
title_fullStr Вариант экстраградиентного алгоритма для монотонных вариационных неравенств
title_full_unstemmed Вариант экстраградиентного алгоритма для монотонных вариационных неравенств
title_sort вариант экстраградиентного алгоритма для монотонных вариационных неравенств
publisher Інститут кібернетики ім. В.М. Глушкова НАН України
publishDate 2014
topic_facet Системный анализ
url http://dspace.nbuv.gov.ua/handle/123456789/115781
citation_txt Вариант экстраградиентного алгоритма для монотонных вариационных неравенств / Ю.В. Малицкий, В.В. Семенов // Кибернетика и системный анализ. — 2014. — Т. 50, № 2. — С. 125-131. — Бібліогр.: 35 назв. — рос.
series Кибернетика и системный анализ
work_keys_str_mv AT malickijûv variantékstragradientnogoalgoritmadlâmonotonnyhvariacionnyhneravenstv
AT semenovvv variantékstragradientnogoalgoritmadlâmonotonnyhvariacionnyhneravenstv
first_indexed 2023-10-18T20:26:11Z
last_indexed 2023-10-18T20:26:11Z
_version_ 1796150190794604544