Нечетко множественные характеристики одномерных временных рядов

Исследовано структурирование временных рядов (ВР) (в виде окна, фрагмента, сегмента или других структурных частей) и представление отдельного окна в виде 2D тензора Ξ с матрицей Х размерностью m х m (m • m равно числу элементов окна ВР) с последующим определением m-векторов u, v (с отдельными ограни...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Минаев, Ю.Н., Филимонова, О.Ю., Минаева, Ю.И.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут проблем моделювання в енергетиці ім. Г.Є. Пухова НАН України 2016
Назва видання:Электронное моделирование
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/115849
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Нечетко множественные характеристики одномерных временных рядов / Ю.Н. Минаев, О.Ю. Филимонова, Ю.И. Минаева // Электронное моделирование. — 2016. — Т. 38, № 6. — С. 45-66. — Бібліогр.: 19 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Исследовано структурирование временных рядов (ВР) (в виде окна, фрагмента, сегмента или других структурных частей) и представление отдельного окна в виде 2D тензора Ξ с матрицей Х размерностью m х m (m • m равно числу элементов окна ВР) с последующим определением m-векторов u, v (с отдельными ограничениями), которые для заданной матрицы данных X минимизируют критерий ||X-Kr uvT||²F +Pλ(u,v), где trace{(X - uvT)(X - uvT)T}; Pλ(u,v)—штрафная функция; -Kr—символ кронекеровой разности. Векторы u, v рассматриваются как подмножество упорядоченных пар, где вектор v играет роль функции принадлежности (v→[0, 1]). Показана целесообразность применения для этой цели процедуры сингулярной декомпозиции. Подмножество упорядоченных пар {u, v}, рассматриваемое как псевдонечетное множество, представляющее собой 2D тензор с матрицей размерностью 2 x m, позволяет сократить объем хранимой информации (m • m > 2 m), получить скрытые знания в форме спектра сингулярных величин и получить новые возможности для решения задач прогнозирования и идентификации аномалий ВР в результате использования инвариантов тензора.