2025-02-22T17:07:53-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-116971%22&qt=morelikethis&rows=5
2025-02-22T17:07:53-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-116971%22&qt=morelikethis&rows=5
2025-02-22T17:07:53-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T17:07:53-05:00 DEBUG: Deserialized SOLR response

Теория стохастического насыщения ферромагнитного резонанса

Для изучения проблем ферромагнитного резонанса одной из основных моделей является феноменологическая модель Ландау–Лифшица. Согласно этой модели, динамика намагниченности в ферромагнетике описывается нелинейным уравнением Ландау–Лифшица. Из-за нелинейности этого уравнения физические свойства, опи...

Full description

Saved in:
Bibliographic Details
Main Authors: Угулава, А.И., Чоторлишвили, Л.Л., Токликишвили, З.З.
Format: Article
Language:Russian
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2008
Series:Физика низких температур
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/116971
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Для изучения проблем ферромагнитного резонанса одной из основных моделей является феноменологическая модель Ландау–Лифшица. Согласно этой модели, динамика намагниченности в ферромагнетике описывается нелинейным уравнением Ландау–Лифшица. Из-за нелинейности этого уравнения физические свойства, описываемые им, чрезвычайно разнообразны. В зависимости от физической ситуации система характеризуется как солитонными, так и хаотическими решениями. Обычно предполагают, что для получения хаотического решения необходимым условием является воздействие на систему случайного поля, обусловленного флуктуациями локальной намагниченности. Показано, что хаотическую динамику можно получить и при регулярном внешнем воздействии. Определены условия возникновения гамильтонового хаоса и приведены численные оценки для конкретных веществ. Получено кинетическое уравнение, которое описывает динамику намагниченности в условиях стохастичности. Показано, что решение кинетического уравнения хорошо согласуется с решениями уравнения Ландау–Лифшица, что подтверждает применимость статистического описания для хаотических динамических систем.