Групповые игровые задачи для систем с переменным запаздыванием
Рассмотрена игровая задача сближения траектории квазилинейного конфликтно-управляемого процесса с цилиндрическим терминальным множеством при наличии переменного запаздывания, что позволяет говорить о гарантированной поимке убегающего. Для дифференциально-разностных игр сближения с запаздыванием обоб...
Збережено в:
Дата: | 2016 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Міжнародний науково-навчальний центр інформаційних технологій і систем НАН України та МОН України
2016
|
Назва видання: | Кибернетика и вычислительная техника |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/117071 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Групповые игровые задачи для систем с переменным запаздыванием / Е.А. Любарщук // Кибернетика и вычислительная техника. — 2016. — Вип. 185. — С. 48-59. — Бібліогр.: 13 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Рассмотрена игровая задача сближения траектории квазилинейного конфликтно-управляемого процесса с цилиндрическим терминальным множеством при наличии переменного запаздывания, что позволяет говорить о гарантированной поимке убегающего. Для дифференциально-разностных игр сближения с запаздыванием обобщается первый прямой метод Л.С. Понтрягина. Это дает возможность сравнить время окончания игры по первому прямому методу Л.С. Понтрягина с методом разрешающих функций. Рассмотрена задача группового преследования и получены достаточные условия сближения в классе квазистратегий, гарантирующие поимку убегающего группой преследователей. |
---|