2025-02-23T16:59:16-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-117179%22&qt=morelikethis&rows=5
2025-02-23T16:59:16-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-117179%22&qt=morelikethis&rows=5
2025-02-23T16:59:16-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T16:59:16-05:00 DEBUG: Deserialized SOLR response
Magnetoelectricity in the ferrimagnetic Cu₂OSeO₃: symmetry analysis and Raman scattering study
We report Raman scattering studies and magneto/structural symmetry analysis of the many sublattices ferrimagnet Cu₂OSeO₃ with a cubic symmetry and a linear magnetoelectric effect. There is no spectroscopic evidence for structural lattice distortions below TC = 60 K, which are expected due to magneto...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2010
|
Series: | Физика низких температур |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/117179 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report Raman scattering studies and magneto/structural symmetry analysis of the many sublattices ferrimagnet Cu₂OSeO₃ with a cubic symmetry and a linear magnetoelectric effect. There is no spectroscopic evidence for structural lattice distortions below TC = 60 K, which are expected due to magnetoelectric coupling. Using symmetry arguments we explain this observation by considering a special type of ferrimagnetic ground state which does not generate a spontaneous electric polarization. Interestingly, Raman scattering shows a strong increase of electric polarization of media through a dynamic magnetoelectric effect as a remarkable enhancement of the scattering intensity below TC. New lines of purely magnetic origin have been detected in the magnetically ordered state. A part of them are attributed as scattering on exchange magnons. Using this observation and further symmetry considerations we argue for strong Dzyaloshinskii–Moriya interaction existing in the Cu₂OSeO₃. |
---|