Visualizing intrinsic localized modes with a nonlinear micromechanical array
Micromechanical cantilever arrays provide the opportunity to visualize the nonlinear excitations of a discrete nonlinear system in real time. Both stationary and moving localized nonlinear excitations can be produced either by driving the system at a frequency outside the plane wave spectrum or by...
Збережено в:
Дата: | 2008 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2008
|
Назва видання: | Физика низких температур |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/117340 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Visualizing intrinsic localized modes with a nonlinear micromechanical array / M. Sato, A.J. Sievers // Физика низких температур. — 2008. — Т. 34, № 7. — С. 687–694. — Бібліогр.: 41 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-117340 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1173402017-05-23T03:02:41Z Visualizing intrinsic localized modes with a nonlinear micromechanical array Sato, M. Sievers, A.J. Низкоразмерные и неупорядоченные системы Micromechanical cantilever arrays provide the opportunity to visualize the nonlinear excitations of a discrete nonlinear system in real time. Both stationary and moving localized nonlinear excitations can be produced either by driving the system at a frequency outside the plane wave spectrum or by driving the system at a frequency within the small amplitude dispersion curve range. To see these modes the tips of the cantilevers are imaged on a 1D CCD camera. The brightness of the image depends on the oscillation amplitude of the cantilever so that a distribution of amplitudes in the array can be recorded as a function of position and time. Both the stationary and traveling excitations have been successfully simulated using a nonlinear lumped element lattice model. The former ILM can appear in any size lattice while the latter requires a low density of modes for the formation of smoothly running excitation. 2008 Article Visualizing intrinsic localized modes with a nonlinear micromechanical array / M. Sato, A.J. Sievers // Физика низких температур. — 2008. — Т. 34, № 7. — С. 687–694. — Бібліогр.: 41 назв. — англ. 0132-6414 PACS: 05.45.–a;63.20.Pw;63.20.Ry;85.85.+j http://dspace.nbuv.gov.ua/handle/123456789/117340 en Физика низких температур Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Низкоразмерные и неупорядоченные системы Низкоразмерные и неупорядоченные системы |
spellingShingle |
Низкоразмерные и неупорядоченные системы Низкоразмерные и неупорядоченные системы Sato, M. Sievers, A.J. Visualizing intrinsic localized modes with a nonlinear micromechanical array Физика низких температур |
description |
Micromechanical cantilever arrays provide the opportunity to visualize the nonlinear excitations of
a discrete nonlinear system in real time. Both stationary and moving localized nonlinear excitations can be
produced either by driving the system at a frequency outside the plane wave spectrum or by driving the system
at a frequency within the small amplitude dispersion curve range. To see these modes the tips of the cantilevers
are imaged on a 1D CCD camera. The brightness of the image depends on the oscillation amplitude
of the cantilever so that a distribution of amplitudes in the array can be recorded as a function of position and
time. Both the stationary and traveling excitations have been successfully simulated using a nonlinear
lumped element lattice model. The former ILM can appear in any size lattice while the latter requires a low
density of modes for the formation of smoothly running excitation. |
format |
Article |
author |
Sato, M. Sievers, A.J. |
author_facet |
Sato, M. Sievers, A.J. |
author_sort |
Sato, M. |
title |
Visualizing intrinsic localized modes with a nonlinear micromechanical array |
title_short |
Visualizing intrinsic localized modes with a nonlinear micromechanical array |
title_full |
Visualizing intrinsic localized modes with a nonlinear micromechanical array |
title_fullStr |
Visualizing intrinsic localized modes with a nonlinear micromechanical array |
title_full_unstemmed |
Visualizing intrinsic localized modes with a nonlinear micromechanical array |
title_sort |
visualizing intrinsic localized modes with a nonlinear micromechanical array |
publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
publishDate |
2008 |
topic_facet |
Низкоразмерные и неупорядоченные системы |
url |
http://dspace.nbuv.gov.ua/handle/123456789/117340 |
citation_txt |
Visualizing intrinsic localized modes with a nonlinear
micromechanical array / M. Sato, A.J. Sievers // Физика низких температур. — 2008. — Т. 34, № 7. — С. 687–694. — Бібліогр.: 41 назв. — англ. |
series |
Физика низких температур |
work_keys_str_mv |
AT satom visualizingintrinsiclocalizedmodeswithanonlinearmicromechanicalarray AT sieversaj visualizingintrinsiclocalizedmodeswithanonlinearmicromechanicalarray |
first_indexed |
2023-10-18T20:29:34Z |
last_indexed |
2023-10-18T20:29:34Z |
_version_ |
1796150343047839744 |