Electrically active magnetic excitations in antiferromagnets (Review Article)

The magnetic resonance operation by electric field is highly nontrivial but the most demanding function in the future spin-electronics. Recently observed in a variety of multiferroics materials named the collective electrically active magnetic excitations, frequently referred to as “electromagnons...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автор: Krivoruchko, V.N.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2012
Назва видання:Физика низких температур
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/117467
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Electrically active magnetic excitations in antiferromagnets (Review Article) / V.N. Krivoruchko // Физика низких температур. — 2012. — Т. 38, № 9. — С. 1018-1031. — Бібліогр.: 97 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The magnetic resonance operation by electric field is highly nontrivial but the most demanding function in the future spin-electronics. Recently observed in a variety of multiferroics materials named the collective electrically active magnetic excitations, frequently referred to as “electromagnons”, reveal a possible way to implement such a function. Experimental advances in terahertz spectroscopy of electromagnons in multiferroics as well as related theoretical models are reviewed. The earlier theoretical works, where the existence of electric-dipole active magnetic excitations in antiferro- and ferrimagnets with collinear spin structure has been predicted, are also discussed. Multi-sublattice magnets with electrically active magnetic excitations at room temperature give a direct possibility to transform one type of excitation into another in a terahertz time-domain. This is of crucial importance for the magnon-based spintronics as only the short-wavelength exchange magnons allow the signal processing on the nanoscale distance.