The Singular Limit of the Dissipative Zakharov System
The dissipative Zakharov system which models the propagation of Langmuir waves in plasmas is considered on the interval [0, L]. We are interested in the case of large ion acoustic speed λ. After the formal limiting transition λ → ∞ this system turns into the coupling system of the parabolic and Schr...
Збережено в:
Дата: | 2015 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2015
|
Назва видання: | Журнал математической физики, анализа, геометрии |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/117985 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The Singular Limit of the Dissipative Zakharov System / A.S. Shcherbina // Журнал математической физики, анализа, геометрии. — 2015. — Т. 11, № 1. — С. 75-99— Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The dissipative Zakharov system which models the propagation of Langmuir waves in plasmas is considered on the interval [0, L]. We are interested in the case of large ion acoustic speed λ. After the formal limiting transition λ → ∞ this system turns into the coupling system of the parabolic and Schrödinger equations. We prove that this limit system has a solution and generates a dissipative dynamical system possessing a global compact attractor. Our main result is the upper semicontinuity of the attractor as λ → ∞. |
---|