Singular optics methods for analysis of spatial structure of diffraction field of optical elements

The paper is devoted to developing methods of analytical and experimental investigations of diffraction and interference phenomena used in test systems for optical elements. The theoretical analysis and experimental results illustrate the possibility of describing diffraction phenomena using the obj...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2003
Автори: Budnyk, O.P., Lymarenko, R.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2003
Назва видання:Semiconductor Physics Quantum Electronics & Optoelectronics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/118054
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Singular optics methods for analysis of spatial structure of diffraction field of optical elements / O.P. Budnyk, R.A. Lymarenko // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2003. — Т. 6, № 3. — С. 417-422. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The paper is devoted to developing methods of analytical and experimental investigations of diffraction and interference phenomena used in test systems for optical elements. The theoretical analysis and experimental results illustrate the possibility of describing diffraction phenomena using the objects and methods that were developed in singular optics. It was shown that a system of dislocations in singular component of diffraction field represents its topology. The diffracted field has a system of hidden optical vortices that are smoothly transformed during deformation of an aperture depending on boundary flexion. The proposed experimental proof ground can be useful for the analysis of a wavefront structure. It is also considered the technique for more accurate evaluation of Ronchi test results. The mathematical background of the Ronchi test technique is developed. It describes sufficiently well the wavefront shape, grating plate parameters, image sensor characteristics, parameters of image acquisition and restoration. The fringe pattern distributions and their spatial spectrum are calculated. Both the results of computer simulation of Ronchi fringe pattern and experimental ones obtained using image sensor and the applied image enhancement algorithms are shown.