Andreev-reflection spectroscopy with superconducting indium — a case study

We have investigated Andreev reflection at interfaces between superconducting indium (Tc = 3.4 K) and several normal conducting nonmagnetic metals (palladium, platinum, and silver) down to T = 0.1 K as well as zinc (Tc = 0.87 K) in its normal state at T = 2.5 K. We analyzed the point-contact spect...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Gloos, K., Tuuli, E.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2013
Назва видання:Физика низких температур
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/118224
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Andreev-reflection spectroscopy with superconducting indium — a case study / K. Gloos, E. Tuuli // Физика низких температур. — 2013. — Т. 39, № 3. — С. 326–334. — Бібліогр.: 51 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We have investigated Andreev reflection at interfaces between superconducting indium (Tc = 3.4 K) and several normal conducting nonmagnetic metals (palladium, platinum, and silver) down to T = 0.1 K as well as zinc (Tc = 0.87 K) in its normal state at T = 2.5 K. We analyzed the point-contact spectra with the modified onedimensional BTK theory valid for ballistic transport. It includes Dynes’ quasiparticle lifetime as fitting parameter Γ in addition to superconducting energy gap 2Δ and strength Z of the interface barrier. For contact areas from less than 1 nm² to 10000 nm² the BTK Z-parameter was close to 0.5, corresponding to transmission coefficients of about 80%, independent of the normal metal. The very small variation of Z indicates that the interfaces have a negligible dielectric tunneling barrier. Also Fermi surface mismatch does not account for the observed Z. The extracted value Z ≈ 0.5 can be explained by assuming that practically all of our point contacts are in the diffusive regime.