Andreev-reflection spectroscopy with superconducting indium — a case study
We have investigated Andreev reflection at interfaces between superconducting indium (Tc = 3.4 K) and several normal conducting nonmagnetic metals (palladium, platinum, and silver) down to T = 0.1 K as well as zinc (Tc = 0.87 K) in its normal state at T = 2.5 K. We analyzed the point-contact spect...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2013
|
Назва видання: | Физика низких температур |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/118224 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Andreev-reflection spectroscopy with superconducting indium — a case study / K. Gloos, E. Tuuli // Физика низких температур. — 2013. — Т. 39, № 3. — С. 326–334. — Бібліогр.: 51 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We have investigated Andreev reflection at interfaces between superconducting indium (Tc = 3.4 K) and several
normal conducting nonmagnetic metals (palladium, platinum, and silver) down to T = 0.1 K as well as zinc
(Tc = 0.87 K) in its normal state at T = 2.5 K. We analyzed the point-contact spectra with the modified onedimensional
BTK theory valid for ballistic transport. It includes Dynes’ quasiparticle lifetime as fitting parameter Γ
in addition to superconducting energy gap 2Δ and strength Z of the interface barrier. For contact areas from less than
1 nm² to 10000 nm² the BTK Z-parameter was close to 0.5, corresponding to transmission coefficients of about
80%, independent of the normal metal. The very small variation of Z indicates that the interfaces have a negligible
dielectric tunneling barrier. Also Fermi surface mismatch does not account for the observed Z. The extracted value
Z ≈ 0.5 can be explained by assuming that practically all of our point contacts are in the diffusive regime. |
---|