Andreev-reflection spectroscopy with superconducting indium — a case study

We have investigated Andreev reflection at interfaces between superconducting indium (Tc = 3.4 K) and several normal conducting nonmagnetic metals (palladium, platinum, and silver) down to T = 0.1 K as well as zinc (Tc = 0.87 K) in its normal state at T = 2.5 K. We analyzed the point-contact spect...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Gloos, K., Tuuli, E.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2013
Назва видання:Физика низких температур
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/118224
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Andreev-reflection spectroscopy with superconducting indium — a case study / K. Gloos, E. Tuuli // Физика низких температур. — 2013. — Т. 39, № 3. — С. 326–334. — Бібліогр.: 51 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-118224
record_format dspace
spelling irk-123456789-1182242017-05-30T03:02:36Z Andreev-reflection spectroscopy with superconducting indium — a case study Gloos, K. Tuuli, E. К 75-летию со дня рождения И. К. Янсона We have investigated Andreev reflection at interfaces between superconducting indium (Tc = 3.4 K) and several normal conducting nonmagnetic metals (palladium, platinum, and silver) down to T = 0.1 K as well as zinc (Tc = 0.87 K) in its normal state at T = 2.5 K. We analyzed the point-contact spectra with the modified onedimensional BTK theory valid for ballistic transport. It includes Dynes’ quasiparticle lifetime as fitting parameter Γ in addition to superconducting energy gap 2Δ and strength Z of the interface barrier. For contact areas from less than 1 nm² to 10000 nm² the BTK Z-parameter was close to 0.5, corresponding to transmission coefficients of about 80%, independent of the normal metal. The very small variation of Z indicates that the interfaces have a negligible dielectric tunneling barrier. Also Fermi surface mismatch does not account for the observed Z. The extracted value Z ≈ 0.5 can be explained by assuming that practically all of our point contacts are in the diffusive regime. 2013 Article Andreev-reflection spectroscopy with superconducting indium — a case study / K. Gloos, E. Tuuli // Физика низких температур. — 2013. — Т. 39, № 3. — С. 326–334. — Бібліогр.: 51 назв. — англ. 0132-6414 PACS: 85.30.Hi, 73.40.–c, 74.45.+c http://dspace.nbuv.gov.ua/handle/123456789/118224 en Физика низких температур Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic К 75-летию со дня рождения И. К. Янсона
К 75-летию со дня рождения И. К. Янсона
spellingShingle К 75-летию со дня рождения И. К. Янсона
К 75-летию со дня рождения И. К. Янсона
Gloos, K.
Tuuli, E.
Andreev-reflection spectroscopy with superconducting indium — a case study
Физика низких температур
description We have investigated Andreev reflection at interfaces between superconducting indium (Tc = 3.4 K) and several normal conducting nonmagnetic metals (palladium, platinum, and silver) down to T = 0.1 K as well as zinc (Tc = 0.87 K) in its normal state at T = 2.5 K. We analyzed the point-contact spectra with the modified onedimensional BTK theory valid for ballistic transport. It includes Dynes’ quasiparticle lifetime as fitting parameter Γ in addition to superconducting energy gap 2Δ and strength Z of the interface barrier. For contact areas from less than 1 nm² to 10000 nm² the BTK Z-parameter was close to 0.5, corresponding to transmission coefficients of about 80%, independent of the normal metal. The very small variation of Z indicates that the interfaces have a negligible dielectric tunneling barrier. Also Fermi surface mismatch does not account for the observed Z. The extracted value Z ≈ 0.5 can be explained by assuming that practically all of our point contacts are in the diffusive regime.
format Article
author Gloos, K.
Tuuli, E.
author_facet Gloos, K.
Tuuli, E.
author_sort Gloos, K.
title Andreev-reflection spectroscopy with superconducting indium — a case study
title_short Andreev-reflection spectroscopy with superconducting indium — a case study
title_full Andreev-reflection spectroscopy with superconducting indium — a case study
title_fullStr Andreev-reflection spectroscopy with superconducting indium — a case study
title_full_unstemmed Andreev-reflection spectroscopy with superconducting indium — a case study
title_sort andreev-reflection spectroscopy with superconducting indium — a case study
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2013
topic_facet К 75-летию со дня рождения И. К. Янсона
url http://dspace.nbuv.gov.ua/handle/123456789/118224
citation_txt Andreev-reflection spectroscopy with superconducting indium — a case study / K. Gloos, E. Tuuli // Физика низких температур. — 2013. — Т. 39, № 3. — С. 326–334. — Бібліогр.: 51 назв. — англ.
series Физика низких температур
work_keys_str_mv AT gloosk andreevreflectionspectroscopywithsuperconductingindiumacasestudy
AT tuulie andreevreflectionspectroscopywithsuperconductingindiumacasestudy
first_indexed 2023-10-18T20:31:38Z
last_indexed 2023-10-18T20:31:38Z
_version_ 1796150430336548864