Solvation of atomic fluorine in bulk superfluid ⁴He

Bosonic density functional theory calculations were carried out for fluorine atom solvated in superfluid ⁴He with an emphasis on the formation of dimeric species in the liquid. Atomic fluorine displays a relatively strong binding and anisotropic interaction with helium and hence the resulting solvat...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автор: Eloranta, J.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2011
Назва видання:Физика низких температур
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/118568
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Solvation of atomic fluorine in bulk superfluid ⁴He / J. Eloranta // Физика низких температур. — 2011. — Т. 37, № 5. — С. 491–493. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Bosonic density functional theory calculations were carried out for fluorine atom solvated in superfluid ⁴He with an emphasis on the formation of dimeric species in the liquid. Atomic fluorine displays a relatively strong binding and anisotropic interaction with helium and hence the resulting solvation structure contains highly localized liquid helium layers. These solvent layers modify the gas phase dimer potentials by inclusion of a recombination barrier, which provides stabilization for the solvated fluorine atoms. At 0 K and saturated vapor pressure, the recombination barrier for the formation of molecular fluorine (²Σ⁺g) in superfluid helium is predicted to be 26.8 K. At temperatures below 1 K, this barrier prevents the F–F recombination as all the other electronic states correlating with the ground state atoms are essentially repulsive. It is concluded that it should be possible to stabilize fluorine atoms in superfluid helium below 1 K temperatures.