Splitting the eigenvectors space for Kildal’s Hamiltonian

The rational canonical form of Kildal’s Hamiltonian has been obtained as a matrix with two identical diagonal blocks. It allowed to formulate and strictly prove few common assertions. Each of the eigenvalues of Kildal’s Hamiltonian is twice degenerated everywhere, and it is well-known Kramers’ de...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Chuiko, G.P., Don, N.L.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2010
Назва видання:Semiconductor Physics Quantum Electronics & Optoelectronics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/118570
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Splitting the eigenvectors space for Kildal’s Hamiltonian / G.P. Chuiko, N.L. Don // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2010. — Т. 13, № 4. — С. 366-368. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The rational canonical form of Kildal’s Hamiltonian has been obtained as a matrix with two identical diagonal blocks. It allowed to formulate and strictly prove few common assertions. Each of the eigenvalues of Kildal’s Hamiltonian is twice degenerated everywhere, and it is well-known Kramers’ degeneration, firstly. However, there is neither degeneration with except for Kramers’, secondly. The symmetry of Kildal’s Hamiltonian forcedly includes the operation of inversion (i.e. the center of symmetry), thirdly. Consequently this form of Hamiltonian is evidently not able to describe the specific properties of crystals without the center of symmetry. The Frobenius form (alias “the rational canonical form”) of Hamiltonian should consist of two non-identical diagonal blocks to remove Kramers’ degeneration.