Finite-size scaling relations of the four-dimensional Ising model on the Creutz cellular automaton

The four-dimensional Ising model is simulated on the Creutz cellular automaton using the finite-size lattices with the linear dimension 4 ≤ L ≤ 8. The temperature variations and the finite-size scaling plots of the specific heat and the Binder parameter verify the theoretically predicted expression...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Merdan, Z., Güzelsoy, E.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2011
Назва видання:Физика низких температур
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/118601
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Finite-size scaling relations of the four-dimensional Ising model on the Creutz cellular automaton / Z. Merdan, E. Güzelsoy // Физика низких температур. — 2011. — Т. 37, № 6. — С. 591–597. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-118601
record_format dspace
spelling irk-123456789-1186012017-05-31T03:08:29Z Finite-size scaling relations of the four-dimensional Ising model on the Creutz cellular automaton Merdan, Z. Güzelsoy, E. Низкотемператуpный магнетизм The four-dimensional Ising model is simulated on the Creutz cellular automaton using the finite-size lattices with the linear dimension 4 ≤ L ≤ 8. The temperature variations and the finite-size scaling plots of the specific heat and the Binder parameter verify the theoretically predicted expression near the infinite lattice critical temperature for the 7, 14, and 21 independent simulations. The approximate values for the critical temperature of the infinite lattice, Tc(∞) = 6.6965(35), 6.6961(30), 6.6960(12), 6.6800(3), 6.6801(2), 6.6802(1) and 6.6925(22) (without logarithmic factor), 6.6921(22) (without logarithmic factor), 6.6909(2) (without logarithmic factor), 6.6822(13) (with logarithmic factor), 6.6819(11) (with logarithmic factor), 6.6808(8) (with logarithmic factor) are obtained from the intersection points of specific heat curves, the Binder parameter curves and the straight line fit of specific heat maxima for the 7, 14, and 21 independent simulations, respectively. As the number of independent simulations increases, the obtained results, 6.6802(1) and 6.6808(8), are in very good agreement with the series expansion results of Tc(∞) = 6.6817(15), 6.6802(2), the dynamic Monte Carlo result of Tc(∞) = 6.6803(1), the cluster Monte Carlo result of Tc(∞) = 6.680(1) and the Monte Carlo using Metropolis and Wolff-cluster algorithm of Tc(∞) = 6.6802632 ± 5⋅10⁻⁵. The average values obtained for the critical exponent of the specific heat are calculated as α = –0.0402(15), –0.0393(12), –0.0391(11) for the 7, 14, and 21 independent simulations, respectively. As the number of independent simulations increases, the obtained result, α = –0.0391(11), is agreement with the series expansions results of α = –0.12 ± 0.03 and the Monte Carlo using Metropolis and Wolff-cluster algorithm of α ≥ 0±0.04. However, α = –0.0391(11) isn’t consistent with the renormalization group prediction of α = 0. 2011 Article Finite-size scaling relations of the four-dimensional Ising model on the Creutz cellular automaton / Z. Merdan, E. Güzelsoy // Физика низких температур. — 2011. — Т. 37, № 6. — С. 591–597. — Бібліогр.: 21 назв. — англ. 0132-6414 PACS: 05.45.–a, 75.10.Hk, 75.40.Cx http://dspace.nbuv.gov.ua/handle/123456789/118601 en Физика низких температур Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Низкотемператуpный магнетизм
Низкотемператуpный магнетизм
spellingShingle Низкотемператуpный магнетизм
Низкотемператуpный магнетизм
Merdan, Z.
Güzelsoy, E.
Finite-size scaling relations of the four-dimensional Ising model on the Creutz cellular automaton
Физика низких температур
description The four-dimensional Ising model is simulated on the Creutz cellular automaton using the finite-size lattices with the linear dimension 4 ≤ L ≤ 8. The temperature variations and the finite-size scaling plots of the specific heat and the Binder parameter verify the theoretically predicted expression near the infinite lattice critical temperature for the 7, 14, and 21 independent simulations. The approximate values for the critical temperature of the infinite lattice, Tc(∞) = 6.6965(35), 6.6961(30), 6.6960(12), 6.6800(3), 6.6801(2), 6.6802(1) and 6.6925(22) (without logarithmic factor), 6.6921(22) (without logarithmic factor), 6.6909(2) (without logarithmic factor), 6.6822(13) (with logarithmic factor), 6.6819(11) (with logarithmic factor), 6.6808(8) (with logarithmic factor) are obtained from the intersection points of specific heat curves, the Binder parameter curves and the straight line fit of specific heat maxima for the 7, 14, and 21 independent simulations, respectively. As the number of independent simulations increases, the obtained results, 6.6802(1) and 6.6808(8), are in very good agreement with the series expansion results of Tc(∞) = 6.6817(15), 6.6802(2), the dynamic Monte Carlo result of Tc(∞) = 6.6803(1), the cluster Monte Carlo result of Tc(∞) = 6.680(1) and the Monte Carlo using Metropolis and Wolff-cluster algorithm of Tc(∞) = 6.6802632 ± 5⋅10⁻⁵. The average values obtained for the critical exponent of the specific heat are calculated as α = –0.0402(15), –0.0393(12), –0.0391(11) for the 7, 14, and 21 independent simulations, respectively. As the number of independent simulations increases, the obtained result, α = –0.0391(11), is agreement with the series expansions results of α = –0.12 ± 0.03 and the Monte Carlo using Metropolis and Wolff-cluster algorithm of α ≥ 0±0.04. However, α = –0.0391(11) isn’t consistent with the renormalization group prediction of α = 0.
format Article
author Merdan, Z.
Güzelsoy, E.
author_facet Merdan, Z.
Güzelsoy, E.
author_sort Merdan, Z.
title Finite-size scaling relations of the four-dimensional Ising model on the Creutz cellular automaton
title_short Finite-size scaling relations of the four-dimensional Ising model on the Creutz cellular automaton
title_full Finite-size scaling relations of the four-dimensional Ising model on the Creutz cellular automaton
title_fullStr Finite-size scaling relations of the four-dimensional Ising model on the Creutz cellular automaton
title_full_unstemmed Finite-size scaling relations of the four-dimensional Ising model on the Creutz cellular automaton
title_sort finite-size scaling relations of the four-dimensional ising model on the creutz cellular automaton
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2011
topic_facet Низкотемператуpный магнетизм
url http://dspace.nbuv.gov.ua/handle/123456789/118601
citation_txt Finite-size scaling relations of the four-dimensional Ising model on the Creutz cellular automaton / Z. Merdan, E. Güzelsoy // Физика низких температур. — 2011. — Т. 37, № 6. — С. 591–597. — Бібліогр.: 21 назв. — англ.
series Физика низких температур
work_keys_str_mv AT merdanz finitesizescalingrelationsofthefourdimensionalisingmodelonthecreutzcellularautomaton
AT guzelsoye finitesizescalingrelationsofthefourdimensionalisingmodelonthecreutzcellularautomaton
first_indexed 2023-10-18T20:32:36Z
last_indexed 2023-10-18T20:32:36Z
_version_ 1796150474165977088