High-frequency properties of systems with drifting electrons and polar optical phonons

An analysis of interaction between drifting electrons and optical phonons in semiconductors is presented. Three physical systems are studied: three-dimensional electron gas (3DEG) in bulk material; two-dimensional electron gas (2DEG) in a quantum well, and two-dimensional electron gas in a quantu...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Kukhtaruk, S.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2008
Назва видання:Semiconductor Physics Quantum Electronics & Optoelectronics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/118668
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:High-frequency properties of systems with drifting electrons and polar optical phonons / S.M. Kukhtaruk // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2008. — Т. 11, № 1. — С. 43-49. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:An analysis of interaction between drifting electrons and optical phonons in semiconductors is presented. Three physical systems are studied: three-dimensional electron gas (3DEG) in bulk material; two-dimensional electron gas (2DEG) in a quantum well, and two-dimensional electron gas in a quantum well under a metal electrode. The Euler and Poisson equations are used for studying the electron subsystem. Interaction between electrons and polar optical phonons are taken into consideration using a frequency dependence of the dielectric permittivity. As a result, the dispersion equations that describe self-consistent collective oscillations of plasmons and optical phonons are deduced. We found that interaction between electrons and optical phonons leads to instability of the electron subsystem. The considered physical systems are capable to be used as a generator or amplifier of the electromagnetic radiation in the 10 THz frequency range. The effect of instability is suppressed if damping of optical phonons and plasma oscillations is essentially strong.