Towards an analytical theory for charged hard spheres
Ion mixtures require an exclusion core to avoid collapse. The Debye Hueckel (DH) theory, where ions are point charges, is accurate only in the limit of infinite dilution. The mean spherical approximation (MSA) is the embedding of hard cores into DH, and is valid for higher densities. The properties...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2007
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/118703 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Towards an analytical theory for charged hard spheres / L. Blum, D.V.P. Veloz // Condensed Matter Physics. — 2007. — Т. 10, № 3(51). — С. 381-385. — Бібліогр.: 27 назв. — англ. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Ion mixtures require an exclusion core to avoid collapse. The Debye Hueckel (DH) theory, where ions are point charges, is accurate only in the limit of infinite dilution. The mean spherical approximation (MSA) is the embedding of hard cores into DH, and is valid for higher densities. The properties of any ionic mixture can be represented by the single screening parameter Γ which for the equal ionic size restricted model is obtained
from the Debye parameter κ. This Γ representation, the binding mean spherical approximation (BIMSA), is also valid for complex / associating systems, such as the general n-polyelectrolytes. The BIMSA is the only theory that satisfies the infinite dilution limit of the DH theory for any chain length. Furthermore, the contact pair distribution function calculated from our theory agrees with the Monte Carlo of Bresme ea.(Phys. Rev. E, 1995, 51, 289). |
---|