Hydration free energy of hard-sphere solute over a wide range of size studied by various types of solution theories

The hydration free energy of hard-sphere solute is evaluated over a wide range of size using the method of energy representation, information-theoretic approach, reference interaction site model, and scaled-particle theory. The former three are distribution function theories and the hydration free...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Matubayasi, N., Kinoshita, M., Nakahara, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2007
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/118895
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Hydration free energy of hard-sphere solute over a wide range of size studied by various types of solution theories / N. Matubayasi, M. Kinoshita, M. Nakahara // Condensed Matter Physics. — 2007. — Т. 10, № 4(52). — С. 471-480. — Бібліогр.: 37 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-118895
record_format dspace
spelling irk-123456789-1188952017-06-02T03:04:00Z Hydration free energy of hard-sphere solute over a wide range of size studied by various types of solution theories Matubayasi, N. Kinoshita, M. Nakahara, M. The hydration free energy of hard-sphere solute is evaluated over a wide range of size using the method of energy representation, information-theoretic approach, reference interaction site model, and scaled-particle theory. The former three are distribution function theories and the hydration free energy is formulated to reflect the solution structure through distribution functions. The presence of the volume-dependent term is pointed out for the distribution function theories, and the asymptotic behavior in the limit of large solute size is identified. It is indicated that the volume-dependent term is a key to the improvement of distribution function theories toward the application to large molecules. Вiльна енергiя гiдратацiї твердих сфер в широкому iнтервалi розмiрiв розрахована методами енергетичного представлення, iнформацiйно-теоретичного пiдходу, методом базисних взаємодiючих силових центрiв та на основi теорiї масштабної частинки. Першi з трьох пов’язанi з методом функцiй розподiлу, а вiльна енергiя гiдратацiї вiдображає структуру розчину через функцiї розподiлу. Присутнiсть об’ємно-залежного доданка виходить за рамки теорiй на основi функцiй розподiлу. Асимптотична поведiнка в границi великої твердої сфери є iдентифiкована. Це вказує, що об’ємно-залежний доданок є ключовим для покращення теорiй, базованих на функцiях розподiлу, в застосуваннях до великих молекул. 2007 Article Hydration free energy of hard-sphere solute over a wide range of size studied by various types of solution theories / N. Matubayasi, M. Kinoshita, M. Nakahara // Condensed Matter Physics. — 2007. — Т. 10, № 4(52). — С. 471-480. — Бібліогр.: 37 назв. — англ. 1607-324X PACS: 05.20.Jj, 61.20.Gy, 61.20.Ne, 61.20.Qg, 61.25.Em, 82.60.Lf DOI:10.5488/CMP.10.4.471 http://dspace.nbuv.gov.ua/handle/123456789/118895 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The hydration free energy of hard-sphere solute is evaluated over a wide range of size using the method of energy representation, information-theoretic approach, reference interaction site model, and scaled-particle theory. The former three are distribution function theories and the hydration free energy is formulated to reflect the solution structure through distribution functions. The presence of the volume-dependent term is pointed out for the distribution function theories, and the asymptotic behavior in the limit of large solute size is identified. It is indicated that the volume-dependent term is a key to the improvement of distribution function theories toward the application to large molecules.
format Article
author Matubayasi, N.
Kinoshita, M.
Nakahara, M.
spellingShingle Matubayasi, N.
Kinoshita, M.
Nakahara, M.
Hydration free energy of hard-sphere solute over a wide range of size studied by various types of solution theories
Condensed Matter Physics
author_facet Matubayasi, N.
Kinoshita, M.
Nakahara, M.
author_sort Matubayasi, N.
title Hydration free energy of hard-sphere solute over a wide range of size studied by various types of solution theories
title_short Hydration free energy of hard-sphere solute over a wide range of size studied by various types of solution theories
title_full Hydration free energy of hard-sphere solute over a wide range of size studied by various types of solution theories
title_fullStr Hydration free energy of hard-sphere solute over a wide range of size studied by various types of solution theories
title_full_unstemmed Hydration free energy of hard-sphere solute over a wide range of size studied by various types of solution theories
title_sort hydration free energy of hard-sphere solute over a wide range of size studied by various types of solution theories
publisher Інститут фізики конденсованих систем НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/118895
citation_txt Hydration free energy of hard-sphere solute over a wide range of size studied by various types of solution theories / N. Matubayasi, M. Kinoshita, M. Nakahara // Condensed Matter Physics. — 2007. — Т. 10, № 4(52). — С. 471-480. — Бібліогр.: 37 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT matubayasin hydrationfreeenergyofhardspheresoluteoverawiderangeofsizestudiedbyvarioustypesofsolutiontheories
AT kinoshitam hydrationfreeenergyofhardspheresoluteoverawiderangeofsizestudiedbyvarioustypesofsolutiontheories
AT nakaharam hydrationfreeenergyofhardspheresoluteoverawiderangeofsizestudiedbyvarioustypesofsolutiontheories
first_indexed 2023-10-18T20:33:15Z
last_indexed 2023-10-18T20:33:15Z
_version_ 1796150503484162048