To the statistic theory of dispersion of tensors of electric conductivity and dielectric susceptibility of electrolyte solutions
We have obtained an equation describing space-time behaviour of the current density component by using kinetic equation for one-particle distribution function for the structural units of the solution with the generalized Vlasov potential. The analytic expression for the complex tensor of electroco...
Збережено в:
Дата: | 2004 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2004
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/119019 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | To the statistic theory of dispersion of tensors of electric conductivity and dielectric susceptibility of electrolyte solutions / S. Odinaev, I. Ojimamadov // Condensed Matter Physics. — 2004. — Т. 7, № 4(40). — С. 735–740. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-119019 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1190192017-06-04T03:03:52Z To the statistic theory of dispersion of tensors of electric conductivity and dielectric susceptibility of electrolyte solutions Odinaev, S. Ojimamadov, I. We have obtained an equation describing space-time behaviour of the current density component by using kinetic equation for one-particle distribution function for the structural units of the solution with the generalized Vlasov potential. The analytic expression for the complex tensor of electroconductivity σ(ω) is given derived from the Fourier-transform and from the comparison with the differential form of the Ohm’s law. This permitted us to obtain the dielectric susceptibility tensor ε(ω) for conducting media. By identifying the longitudal εk and transversal ε⊥ parts one can determine the anisotropy of the dielectric susceptibility for electrolyte solutions. Отримано рівняння, яке описує просторово-часову поведінку компоненти густини струму, використовуючи кінетичне рівняння для одночастинкової функції розподілу структурних компонент розчину з узагальненим потенціалом Власова. Представлено аналітичний вираз для комплексного тензора електропровідності σ(ω) , який виведений з Фур’є-перетворення і з диференціальної форми закону Ома. Це дало змогу отримати тензор діелектричної сприйнятливості ε(ω) для провідного середовища. Виділяючи поздовжню εk і поперечну ε⊥ частини можна визначити анізотропію діелектричної сприйнятливості для електричних розчинів. 2004 Article To the statistic theory of dispersion of tensors of electric conductivity and dielectric susceptibility of electrolyte solutions / S. Odinaev, I. Ojimamadov // Condensed Matter Physics. — 2004. — Т. 7, № 4(40). — С. 735–740. — Бібліогр.: 8 назв. — англ. 1607-324X DOI:10.5488/CMP.7.4.735 PACS: 61.20.Qg, 51.10.+y http://dspace.nbuv.gov.ua/handle/123456789/119019 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We have obtained an equation describing space-time behaviour of the current density component by using kinetic equation for one-particle distribution function for the structural units of the solution with the generalized Vlasov potential.
The analytic expression for the complex tensor of electroconductivity σ(ω) is given derived from the Fourier-transform and from the comparison with the differential form of the Ohm’s law. This permitted us to obtain the dielectric susceptibility tensor ε(ω) for conducting media. By identifying the longitudal εk and transversal ε⊥ parts one can determine the anisotropy of the dielectric susceptibility for electrolyte solutions. |
format |
Article |
author |
Odinaev, S. Ojimamadov, I. |
spellingShingle |
Odinaev, S. Ojimamadov, I. To the statistic theory of dispersion of tensors of electric conductivity and dielectric susceptibility of electrolyte solutions Condensed Matter Physics |
author_facet |
Odinaev, S. Ojimamadov, I. |
author_sort |
Odinaev, S. |
title |
To the statistic theory of dispersion of tensors of electric conductivity and dielectric susceptibility of electrolyte solutions |
title_short |
To the statistic theory of dispersion of tensors of electric conductivity and dielectric susceptibility of electrolyte solutions |
title_full |
To the statistic theory of dispersion of tensors of electric conductivity and dielectric susceptibility of electrolyte solutions |
title_fullStr |
To the statistic theory of dispersion of tensors of electric conductivity and dielectric susceptibility of electrolyte solutions |
title_full_unstemmed |
To the statistic theory of dispersion of tensors of electric conductivity and dielectric susceptibility of electrolyte solutions |
title_sort |
to the statistic theory of dispersion of tensors of electric conductivity and dielectric susceptibility of electrolyte solutions |
publisher |
Інститут фізики конденсованих систем НАН України |
publishDate |
2004 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/119019 |
citation_txt |
To the statistic theory of dispersion of tensors of electric conductivity and dielectric susceptibility of electrolyte solutions / S. Odinaev, I. Ojimamadov // Condensed Matter Physics. — 2004. — Т. 7, № 4(40). — С. 735–740. — Бібліогр.: 8 назв. — англ. |
series |
Condensed Matter Physics |
work_keys_str_mv |
AT odinaevs tothestatistictheoryofdispersionoftensorsofelectricconductivityanddielectricsusceptibilityofelectrolytesolutions AT ojimamadovi tothestatistictheoryofdispersionoftensorsofelectricconductivityanddielectricsusceptibilityofelectrolytesolutions |
first_indexed |
2023-10-18T20:33:36Z |
last_indexed |
2023-10-18T20:33:36Z |
_version_ |
1796150516124745728 |