2025-02-23T13:57:37-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-119139%22&qt=morelikethis&rows=5
2025-02-23T13:57:37-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-119139%22&qt=morelikethis&rows=5
2025-02-23T13:57:37-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T13:57:37-05:00 DEBUG: Deserialized SOLR response
Yamada-Watanabe theorem for stochastic evolution equations in infinite dimensions
The purpose of this note is to give a complete and detailed proof of the fundamental Yamada-Watanabe Theorem on infinite dimensional spaces, more precisely in the framework of the variational approach to stochastic partial differential equations.
Saved in:
Main Authors: | Röckner, M., Schmuland, B., Zhang, X. |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут фізики конденсованих систем НАН України
2008
|
Series: | Condensed Matter Physics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/119139 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
2025-02-23T13:57:37-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-119139%22&qt=morelikethis
2025-02-23T13:57:37-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-119139%22&qt=morelikethis
2025-02-23T13:57:37-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T13:57:37-05:00 DEBUG: Deserialized SOLR response
Similar Items
-
Limit theorems for backward stochastic equations
by: Makhno, S.Ya., et al.
Published: (2008) -
Limit theorem for coiuntable systems of stochastic differential equations
by: Yu. Pylypenko, et al.
Published: (2016) -
A comonotonic theorem for backward stochastic differential equations in Lp and its applications
by: Zong, Z.J.
Published: (2012) -
Evolution of the Sharkovsky theorem
by: A. Blokh, et al.
Published: (2024) -
Support theorem on stochastic flows with interaction
by: Pilipenko, A.Yu.
Published: (2006)