Modelling complex networks by random hierarchical graphs

Numerous complex networks contain special patterns, called network motifs. These are specific subgraphs, which occur oftener than in randomized networks of Erd˝os-R´enyi type. We choose one of them, the triangle, and build a family of random hierarchical graphs, being Sierpi ´nski gasket-based gra...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Wróbel, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2008
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/119146
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Modelling complex networks by random hierarchical graphs / M. Wróbel // Condensed Matter Physics. — 2008. — Т. 11, № 2(54). — С. 341-346. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Numerous complex networks contain special patterns, called network motifs. These are specific subgraphs, which occur oftener than in randomized networks of Erd˝os-R´enyi type. We choose one of them, the triangle, and build a family of random hierarchical graphs, being Sierpi ´nski gasket-based graphs with random “decorations”. We calculate the important characteristics of these graphs – average degree, average shortest path length, small-world graph family characteristics. They depend on probability of decorations. We analyze the Ising model on our graphs and describe its critical properties using a renormalization-group technique.