Differential functional von Foerster equations with renewal
Natural iterative methods converge to the exact solution of a differential-functional von Foerster-type equation which describes a single population dependent on its past time and state densities as well as on its total size. On the lateral boundary we impose a renewal condition.
Збережено в:
Дата: | 2008 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2008
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/119287 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Differential functional von Foerster equations with renewal / H. Leszczyński // Condensed Matter Physics. — 2008. — Т. 11, № 2(54). — С. 361-370. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-119287 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1192872017-06-06T03:04:04Z Differential functional von Foerster equations with renewal Leszczyński, H. Natural iterative methods converge to the exact solution of a differential-functional von Foerster-type equation which describes a single population dependent on its past time and state densities as well as on its total size. On the lateral boundary we impose a renewal condition. Природнi iтеративнi методи збiгаються до точного розв’язку диференцiально-функцiонального рiвняння типу фон Фьорстера, що описує популяцiю, залежну вiд своїх минулих густин станiв i вiд загального розмiру. На бiчнiй границi ми накладаємо умову вiдновлення. 2008 Article Differential functional von Foerster equations with renewal / H. Leszczyński // Condensed Matter Physics. — 2008. — Т. 11, № 2(54). — С. 361-370. — Бібліогр.: 15 назв. — англ. 1607-324X PACS: 87.10.+e, 82.39.-k, 82.39.Rk DOI:10.5488/CMP.11.2.361 http://dspace.nbuv.gov.ua/handle/123456789/119287 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Natural iterative methods converge to the exact solution of a differential-functional von Foerster-type equation
which describes a single population dependent on its past time and state densities as well as on its total size.
On the lateral boundary we impose a renewal condition. |
format |
Article |
author |
Leszczyński, H. |
spellingShingle |
Leszczyński, H. Differential functional von Foerster equations with renewal Condensed Matter Physics |
author_facet |
Leszczyński, H. |
author_sort |
Leszczyński, H. |
title |
Differential functional von Foerster equations with renewal |
title_short |
Differential functional von Foerster equations with renewal |
title_full |
Differential functional von Foerster equations with renewal |
title_fullStr |
Differential functional von Foerster equations with renewal |
title_full_unstemmed |
Differential functional von Foerster equations with renewal |
title_sort |
differential functional von foerster equations with renewal |
publisher |
Інститут фізики конденсованих систем НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/119287 |
citation_txt |
Differential functional von Foerster equations with renewal / H. Leszczyński // Condensed Matter Physics. — 2008. — Т. 11, № 2(54). — С. 361-370. — Бібліогр.: 15 назв. — англ. |
series |
Condensed Matter Physics |
work_keys_str_mv |
AT leszczynskih differentialfunctionalvonfoersterequationswithrenewal |
first_indexed |
2023-10-18T20:34:11Z |
last_indexed |
2023-10-18T20:34:11Z |
_version_ |
1796150546388746240 |