F-electron spectral function of the Falicov-Kimball model and the Wiener-Hopf sum equation approach

We derive an alternative representation for the f-electron spectral function of the Falicov-Kimball model from the original one proposed by Brandt and Urbanek. In the new representation, all calculations are restricted to the real time axis, allowing us to go to arbitrarily low temperatures. The g...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Shvaika, A.M., Freericks, J.K.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2008
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/119339
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:F-electron spectral function of the Falicov-Kimball model and the Wiener-Hopf sum equation approach / A.M. Shvaika, J.K. Freericks // Condensed Matter Physics. — 2008. — Т. 11, № 3(55). — С. 425-442. — Бібліогр.: 25 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We derive an alternative representation for the f-electron spectral function of the Falicov-Kimball model from the original one proposed by Brandt and Urbanek. In the new representation, all calculations are restricted to the real time axis, allowing us to go to arbitrarily low temperatures. The general formula for the retarded Green's function involves two determinants of continuous matrix operators that have the Toeplitz form. By employing the Wiener-Hopf sum equation approach and Szeg¨ o's theorem, we can derive exact analytic formulas for the large-time limits of the Green's function; we illustrate this for cases when the logarithm of characteristic function (which de nes the continuous Toeplitz matrix) does and does not wind around the origin. We show how accurate these asymptotic formulas are to the exact solutions found from extrapolating matrix calculations to the zero discretization size limit.