F-electron spectral function of the Falicov-Kimball model and the Wiener-Hopf sum equation approach
We derive an alternative representation for the f-electron spectral function of the Falicov-Kimball model from the original one proposed by Brandt and Urbanek. In the new representation, all calculations are restricted to the real time axis, allowing us to go to arbitrarily low temperatures. The g...
Збережено в:
Дата: | 2008 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2008
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/119339 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | F-electron spectral function of the Falicov-Kimball model and the Wiener-Hopf sum equation approach / A.M. Shvaika, J.K. Freericks // Condensed Matter Physics. — 2008. — Т. 11, № 3(55). — С. 425-442. — Бібліогр.: 25 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We derive an alternative representation for the f-electron spectral function of the Falicov-Kimball model from
the original one proposed by Brandt and Urbanek. In the new representation, all calculations are restricted
to the real time axis, allowing us to go to arbitrarily low temperatures. The general formula for the retarded
Green's function involves two determinants of continuous matrix operators that have the Toeplitz form. By employing
the Wiener-Hopf sum equation approach and Szeg¨ o's theorem, we can derive exact analytic formulas
for the large-time limits of the Green's function; we illustrate this for cases when the logarithm of characteristic
function (which de nes the continuous Toeplitz matrix) does and does not wind around the origin. We show
how accurate these asymptotic formulas are to the exact solutions found from extrapolating matrix calculations
to the zero discretization size limit. |
---|