High-temperature series expansions for random Potts models
We discuss recently generated high-temperature series expansions for the free energy and the susceptibility of random-bond q-state Potts models on hypercubic lattices. Using the star-graph expansion technique, quenched disorder averages can be calculated exactly for arbitrary uncorrelated couplin...
Збережено в:
Дата: | 2005 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2005
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/119384 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | High-temperature series expansions for random Potts models / M. Hellmund, W. Janke // Condensed Matter Physics. — 2005. — Т. 8, № 1(41). — С. 59–74. — Бібліогр.: 40 назв. — англ. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We discuss recently generated high-temperature series expansions for the
free energy and the susceptibility of random-bond q-state Potts models on
hypercubic lattices. Using the star-graph expansion technique, quenched
disorder averages can be calculated exactly for arbitrary uncorrelated coupling
distributions while keeping the disorder strength p as well as the dimension
d as symbolic parameters. We present analyses of the new series
for the susceptibility of the Ising (q = 2) and 4-state Potts model in three
dimensions up to the order 19 and 18, respectively, and compare our findings
with results from field-theoretical renormalization group studies and
Monte Carlo simulations. |
---|