Interacting N-vector order parameters with O(N) symmetry
We consider the critical behavior of the most general system of two Nvector order parameters that is O(N) invariant. We show that it may have a multicritical transition with enlarged symmetry controlled by the chiral O(2) ⊗ O(N) fixed point. For N = 2, 3, 4, if the system is also invariant under...
Збережено в:
Дата: | 2005 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2005
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/119386 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Interacting N-vector order parameters with O(N) symmetry / A. Pelissetto, E. Vicari // Condensed Matter Physics. — 2005. — Т. 8, № 1(41). — С. 87–101. — Бібліогр.: 28 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We consider the critical behavior of the most general system of two Nvector
order parameters that is O(N) invariant. We show that it may have
a multicritical transition with enlarged symmetry controlled by the chiral
O(2) ⊗ O(N) fixed point. For N = 2, 3, 4, if the system is also invariant
under the exchange of the two order parameters and under independent
parity transformations, one may observe a critical transition
controlled by a fixed point belonging to the mn model. Also in this case
there is a symmetry enlargement at the transition, the symmetry being
[SO(N) ⊕ SO(N)] ⊗ C₂, where C₂ is the symmetry group of the square. |
---|