Interacting N-vector order parameters with O(N) symmetry

We consider the critical behavior of the most general system of two Nvector order parameters that is O(N) invariant. We show that it may have a multicritical transition with enlarged symmetry controlled by the chiral O(2) ⊗ O(N) fixed point. For N = 2, 3, 4, if the system is also invariant under...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автори: Pelissetto, A., Vicari, E.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2005
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/119386
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Interacting N-vector order parameters with O(N) symmetry / A. Pelissetto, E. Vicari // Condensed Matter Physics. — 2005. — Т. 8, № 1(41). — С. 87–101. — Бібліогр.: 28 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We consider the critical behavior of the most general system of two Nvector order parameters that is O(N) invariant. We show that it may have a multicritical transition with enlarged symmetry controlled by the chiral O(2) ⊗ O(N) fixed point. For N = 2, 3, 4, if the system is also invariant under the exchange of the two order parameters and under independent parity transformations, one may observe a critical transition controlled by a fixed point belonging to the mn model. Also in this case there is a symmetry enlargement at the transition, the symmetry being [SO(N) ⊕ SO(N)] ⊗ C₂, where C₂ is the symmetry group of the square.