Random Ising model in three dimensions: theory, experiment and simulation – a difficult coexistence
We discuss different approaches to the study of the effect of disorder in the three-dimensional Ising model. From the theoretical point of view, renormalization group calculations provide quite accurate results. Experiments carried out on crystalline mixtures of compounds lead to measurements as...
Збережено в:
Дата: | 2005 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2005
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/119392 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Random Ising model in three dimensions: theory, experiment and simulation – a difficult coexistence / B. Berche, P.E. Berche, C. Chatelain, W. Janke // Condensed Matter Physics. — 2005. — Т. 8, № 1(41). — С. 47-58. — Бібліогр.: 17 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We discuss different approaches to the study of the effect of disorder in the
three-dimensional Ising model. From the theoretical point of view, renormalization
group calculations provide quite accurate results. Experiments
carried out on crystalline mixtures of compounds lead to measurements as
accurate as three digits on the values of critical exponents. Numerically,
extensive Monte Carlo simulations then pretend to be of comparable accuracy.
Life becomes complicated when details are compared between the
three approaches. |
---|