Critical thermodynamics of two-dimensional N-vector cubic model in the five-loop approximation
The critical behavior of the two-dimensional N-vector cubic model is studied within the field-theoretical renormalization-group (RG) approach. The β functions and critical exponents are calculated in the five-loop approximation, RG series obtained are resummed using Pade-Borel-Leroy and ´ confor...
Збережено в:
Дата: | 2005 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2005
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/119483 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Critical thermodynamics of two-dimensional N-vector cubic model in the five-loop approximation / P. Calabrese, E.V. Orlov, D.V. Pakhnin, A.I. Sokolov // Condensed Matter Physics. — 2005. — Т. 8, № 1(41). — С. 193–211. — Бібліогр.: 31 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The critical behavior of the two-dimensional N-vector cubic model is studied
within the field-theoretical renormalization-group (RG) approach. The
β functions and critical exponents are calculated in the five-loop approximation,
RG series obtained are resummed using Pade-Borel-Leroy and ´
conformal mapping techniques. It is found that for N = 2 the continuous
line of fixed points is well reproduced by the resummed RG series and an
account for the five-loop terms makes the lines of zeros of both β functions
closer to each other. For N > 3 the five-loop contributions are shown to
shift the cubic fixed point, given by the four-loop approximation, towards
the Ising fixed point. This confirms the idea that the existence of the cubic
fixed point in two dimensions under N >2 is an artifact of the perturbative
analysis. In the case N = 0 the results obtained are compatible with the
conclusion that the impure critical behavior is controlled by the Ising fixed
point. |
---|