Critical thermodynamics of two-dimensional N-vector cubic model in the five-loop approximation
The critical behavior of the two-dimensional N-vector cubic model is studied within the field-theoretical renormalization-group (RG) approach. The β functions and critical exponents are calculated in the five-loop approximation, RG series obtained are resummed using Pade-Borel-Leroy and ´ confor...
Збережено в:
Дата: | 2005 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2005
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/119483 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Critical thermodynamics of two-dimensional N-vector cubic model in the five-loop approximation / P. Calabrese, E.V. Orlov, D.V. Pakhnin, A.I. Sokolov // Condensed Matter Physics. — 2005. — Т. 8, № 1(41). — С. 193–211. — Бібліогр.: 31 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-119483 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1194832017-06-08T03:04:21Z Critical thermodynamics of two-dimensional N-vector cubic model in the five-loop approximation Calabrese, P. Orlov, E.V. Pakhnin, D.V. Sokolov, A.I. The critical behavior of the two-dimensional N-vector cubic model is studied within the field-theoretical renormalization-group (RG) approach. The β functions and critical exponents are calculated in the five-loop approximation, RG series obtained are resummed using Pade-Borel-Leroy and ´ conformal mapping techniques. It is found that for N = 2 the continuous line of fixed points is well reproduced by the resummed RG series and an account for the five-loop terms makes the lines of zeros of both β functions closer to each other. For N > 3 the five-loop contributions are shown to shift the cubic fixed point, given by the four-loop approximation, towards the Ising fixed point. This confirms the idea that the existence of the cubic fixed point in two dimensions under N >2 is an artifact of the perturbative analysis. In the case N = 0 the results obtained are compatible with the conclusion that the impure critical behavior is controlled by the Ising fixed point. В рамках теоретико-польового підходу ренормалізаційної групи (РГ) вивчається критична поведінка двовимірної N-векторної кубічної моделі. β функції і критичні показники обчислюються в п’ятипетлевому наближенні, отримані РГ ряди пересумовуються з використанням техніки Паде-Бореля-Лєруа і конформного перетворення. Знайдено, що для N = 2 неперервна лінія нерухомих точок добре відтворюється пересумованими РГ рядами і врахування п’ятипетлевих членів робить лінії нулів обох β функцій ближчими один до одного. Показано, що для N > 3 п’яти-петлеві внески зсувають кубічну нерухому точку, отриману в чотири-петлевому наближенні, до нерухомої точки Ізинґа. Це підтверджує ідею, що існування кубічної нерухомої точки в двох вимірах під N > 2 є результатом пертурбативного аналізу. У випадку N = 0 отримані результати є сумісні з висновком, що критична поведінка, пов’язана з домішками, контролюється нерухомою точкою Ізинґа. 2005 Article Critical thermodynamics of two-dimensional N-vector cubic model in the five-loop approximation / P. Calabrese, E.V. Orlov, D.V. Pakhnin, A.I. Sokolov // Condensed Matter Physics. — 2005. — Т. 8, № 1(41). — С. 193–211. — Бібліогр.: 31 назв. — англ. 1607-324X PACS: 75.10.Hk, 05.70.Jk, 64.60.Fr, 11.10.Kk DOI:10.5488/CMP.8.1.193 http://dspace.nbuv.gov.ua/handle/123456789/119483 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The critical behavior of the two-dimensional N-vector cubic model is studied
within the field-theoretical renormalization-group (RG) approach. The
β functions and critical exponents are calculated in the five-loop approximation,
RG series obtained are resummed using Pade-Borel-Leroy and ´
conformal mapping techniques. It is found that for N = 2 the continuous
line of fixed points is well reproduced by the resummed RG series and an
account for the five-loop terms makes the lines of zeros of both β functions
closer to each other. For N > 3 the five-loop contributions are shown to
shift the cubic fixed point, given by the four-loop approximation, towards
the Ising fixed point. This confirms the idea that the existence of the cubic
fixed point in two dimensions under N >2 is an artifact of the perturbative
analysis. In the case N = 0 the results obtained are compatible with the
conclusion that the impure critical behavior is controlled by the Ising fixed
point. |
format |
Article |
author |
Calabrese, P. Orlov, E.V. Pakhnin, D.V. Sokolov, A.I. |
spellingShingle |
Calabrese, P. Orlov, E.V. Pakhnin, D.V. Sokolov, A.I. Critical thermodynamics of two-dimensional N-vector cubic model in the five-loop approximation Condensed Matter Physics |
author_facet |
Calabrese, P. Orlov, E.V. Pakhnin, D.V. Sokolov, A.I. |
author_sort |
Calabrese, P. |
title |
Critical thermodynamics of two-dimensional N-vector cubic model in the five-loop approximation |
title_short |
Critical thermodynamics of two-dimensional N-vector cubic model in the five-loop approximation |
title_full |
Critical thermodynamics of two-dimensional N-vector cubic model in the five-loop approximation |
title_fullStr |
Critical thermodynamics of two-dimensional N-vector cubic model in the five-loop approximation |
title_full_unstemmed |
Critical thermodynamics of two-dimensional N-vector cubic model in the five-loop approximation |
title_sort |
critical thermodynamics of two-dimensional n-vector cubic model in the five-loop approximation |
publisher |
Інститут фізики конденсованих систем НАН України |
publishDate |
2005 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/119483 |
citation_txt |
Critical thermodynamics of two-dimensional N-vector cubic model in the five-loop approximation / P. Calabrese, E.V. Orlov, D.V. Pakhnin, A.I. Sokolov // Condensed Matter Physics. — 2005. — Т. 8, № 1(41). — С. 193–211. — Бібліогр.: 31 назв. — англ. |
series |
Condensed Matter Physics |
work_keys_str_mv |
AT calabresep criticalthermodynamicsoftwodimensionalnvectorcubicmodelinthefiveloopapproximation AT orlovev criticalthermodynamicsoftwodimensionalnvectorcubicmodelinthefiveloopapproximation AT pakhnindv criticalthermodynamicsoftwodimensionalnvectorcubicmodelinthefiveloopapproximation AT sokolovai criticalthermodynamicsoftwodimensionalnvectorcubicmodelinthefiveloopapproximation |
first_indexed |
2023-10-18T20:34:39Z |
last_indexed |
2023-10-18T20:34:39Z |
_version_ |
1796150565401526272 |