Scaling in public transport networks
We analyse the statistical properties of public transport networks. These networks are defined by a set of public transport routes (bus lines) and the stations serviced by these. For larger networks these appear to possess a scale-free structure, as it is demonstrated e.g. by the Zipf law distrib...
Збережено в:
Дата: | 2005 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2005
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/119485 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Scaling in public transport networks / C. von Ferber, Yu. Holovatch, V. Palchykov // Condensed Matter Physics. — 2005. — Т. 8, № 1(41). — С. 225–234. — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We analyse the statistical properties of public transport networks. These
networks are defined by a set of public transport routes (bus lines) and the
stations serviced by these. For larger networks these appear to possess a
scale-free structure, as it is demonstrated e.g. by the Zipf law distribution
of the number of routes servicing a given station or for the distribution of
the number of stations which can be visited from a chosen one without
changing the means of transport. Moreover, a rather particular feature of
the public transport network is that many routes service common subsets of
stations. We discuss the possibility of new scaling laws that govern intrinsic
properties of such subsets. |
---|