On the kinetics of phase transformation of small particles in Kolmogorov's model

The classical Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory is generalized to the case of a finite-size system. The problem of calculating the new-phase volume fraction in a spherical domain is solved within the framework of geometrical-probabilistic approach. The solutions are obtained for both h...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Alekseechkin, N.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2008
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/119573
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the kinetics of phase transformation of small particles in Kolmogorov's model / N.V. Alekseechkin // Condensed Matter Physics. — 2008. — Т. 11, № 4(56). — С. 597-613. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The classical Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory is generalized to the case of a finite-size system. The problem of calculating the new-phase volume fraction in a spherical domain is solved within the framework of geometrical-probabilistic approach. The solutions are obtained for both homogeneous and heterogeneous nucleations. It is shown that the finiteness property results in a qualitative distinction of the volume-fraction time dependence from that in infinite space: the Avrami exponent in the process of homogeneous nucleation decreases with time from 4 to 1, i.e. a slowing down of the transformation process takes place. The obtained results can be used, in particular, for controlling the crystallization kinetics in amorphous powders.