Non-equilibrium stochastic dynamics in continuum: The free case

We study the problem of identification of a proper state-space for the stochastic dynamics of free particles in continuum, with their possible birth and death. In this dynamics, the motion of each separate particle is described by a fixed Markov process M on a Riemannian manifold X. The main probl...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Kondratiev, Y., Lytvynov, E., Röckner, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2008
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/119593
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Non-equilibrium stochastic dynamics in continuum: The free case / Y. Kondratiev, E. Lytvynov, M. Röckner // Condensed Matter Physics. — 2008. — Т. 11, № 4(56). — С. 701-721. — Бібліогр.: 25 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-119593
record_format dspace
spelling irk-123456789-1195932017-06-08T03:03:44Z Non-equilibrium stochastic dynamics in continuum: The free case Kondratiev, Y. Lytvynov, E. Röckner, M. We study the problem of identification of a proper state-space for the stochastic dynamics of free particles in continuum, with their possible birth and death. In this dynamics, the motion of each separate particle is described by a fixed Markov process M on a Riemannian manifold X. The main problem arising here is a possible collapse of the system, in the sense that, though the initial configuration of particles is locally finite, there could exist a compact set in X such that, with probability one, infinitely many particles will arrive at this set at some time t > 0. We assume that X has infinite volume and, for each α ≥ 1, we consider the set θα of all infinite configurations in X for which the number of particles in a compact set is bounded by a constant times the α-th power of the volume of the set. We find quite general conditions on the process M which guarantee that the corresponding infinite particle process can start at each configuration from θα, will never leave θα, and has cadlag (or, even, continuous) sample paths in the vague topology. We consider the following examples of applications of our results: Brownian motion on the configuration space, free Glauber dynamics on the configuration space (or a birth-and-death process in X), and free Kawasaki dynamics on the configuration space. We also show that if X = Rd, then for a wide class of starting distributions, the (non-equilibrium) free Glauber dynamics is a scaling limit of (non-equilibrium) free Kawasaki dynamics. Ми дослiджуємо проблему iдентифiкацiї вiдповiдного простору станiв для стохастичної динамiки вiльних частинок у континуумi з їх можливим народженням i знищенням. В цiй динамiцi рух окремої частинки описується за допомогою фiксованого маркiвського процесу M на рiмановому многовидi X. Головною проблемою тут є можливий колапс системи у наступному сенсi. Незважаючи на те, що початковий розподiл частинок є локально скiнченний, може iснувати в X така компактна множина, що з ймовiрнiстю 1 в момент часу t > 0 у цю множину потрапить безмежна кiлькiсть частинок. Ми вважаємо, що X має безмежний об’єм, а також, для кожного α ≥ 1, розглядаємо множину θα всiх безмежних конфiгурацiй в X, для яких число частинок в компактнiй множинi є обмежене добутком певної сталої i -го степеня об’єму цiєї множини. Ми знайшли цiлком загальнi умови на процес M, за яких вiдповiдний безмежно-частинковий процес, стартуючи з довiльної конфiгурацiї θα, нiколи не залишить θα, маючи при цьому cadlag (або, навiть, неперервнi) траєкторiї в ультра-слабкiй топологiї. Можливi такi застосування наших результатiв: броунiвський рух на конфiгурацiйнному просторi i вiльна динамiка Глаубера на конфiгурацiйному просторi (процес народження-знищення на X): вiльна динамiка Кавасакi на конфiгурацiйному просторi. Ми також показуємо, що у випадку X = Rd, для широкого класу стартових розкладiв (нерiвноважна) вiльна динамiка Глаубера є скейлiнговою границею (нерiвноважної) вiльної динамiки Кавасакi. 2008 Article Non-equilibrium stochastic dynamics in continuum: The free case / Y. Kondratiev, E. Lytvynov, M. Röckner // Condensed Matter Physics. — 2008. — Т. 11, № 4(56). — С. 701-721. — Бібліогр.: 25 назв. — англ. 1607-324X PACS: 02.50.Ey, 02.50.Ga DOI:10.5488/CMP.11.4.701 http://dspace.nbuv.gov.ua/handle/123456789/119593 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We study the problem of identification of a proper state-space for the stochastic dynamics of free particles in continuum, with their possible birth and death. In this dynamics, the motion of each separate particle is described by a fixed Markov process M on a Riemannian manifold X. The main problem arising here is a possible collapse of the system, in the sense that, though the initial configuration of particles is locally finite, there could exist a compact set in X such that, with probability one, infinitely many particles will arrive at this set at some time t > 0. We assume that X has infinite volume and, for each α ≥ 1, we consider the set θα of all infinite configurations in X for which the number of particles in a compact set is bounded by a constant times the α-th power of the volume of the set. We find quite general conditions on the process M which guarantee that the corresponding infinite particle process can start at each configuration from θα, will never leave θα, and has cadlag (or, even, continuous) sample paths in the vague topology. We consider the following examples of applications of our results: Brownian motion on the configuration space, free Glauber dynamics on the configuration space (or a birth-and-death process in X), and free Kawasaki dynamics on the configuration space. We also show that if X = Rd, then for a wide class of starting distributions, the (non-equilibrium) free Glauber dynamics is a scaling limit of (non-equilibrium) free Kawasaki dynamics.
format Article
author Kondratiev, Y.
Lytvynov, E.
Röckner, M.
spellingShingle Kondratiev, Y.
Lytvynov, E.
Röckner, M.
Non-equilibrium stochastic dynamics in continuum: The free case
Condensed Matter Physics
author_facet Kondratiev, Y.
Lytvynov, E.
Röckner, M.
author_sort Kondratiev, Y.
title Non-equilibrium stochastic dynamics in continuum: The free case
title_short Non-equilibrium stochastic dynamics in continuum: The free case
title_full Non-equilibrium stochastic dynamics in continuum: The free case
title_fullStr Non-equilibrium stochastic dynamics in continuum: The free case
title_full_unstemmed Non-equilibrium stochastic dynamics in continuum: The free case
title_sort non-equilibrium stochastic dynamics in continuum: the free case
publisher Інститут фізики конденсованих систем НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/119593
citation_txt Non-equilibrium stochastic dynamics in continuum: The free case / Y. Kondratiev, E. Lytvynov, M. Röckner // Condensed Matter Physics. — 2008. — Т. 11, № 4(56). — С. 701-721. — Бібліогр.: 25 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT kondratievy nonequilibriumstochasticdynamicsincontinuumthefreecase
AT lytvynove nonequilibriumstochasticdynamicsincontinuumthefreecase
AT rocknerm nonequilibriumstochasticdynamicsincontinuumthefreecase
first_indexed 2023-10-18T20:34:56Z
last_indexed 2023-10-18T20:34:56Z
_version_ 1796150576907550720