Lagrangian vector field and Lagrangian formulation of partial differential equations
In this paper we consider the Lagrangian formulation of a system of second order quasilinear partial differential equations. Specifically we construct a Lagrangian vector field such that the flows of the vector field satisfy the original system of partial differential equations.
Збережено в:
Дата: | 2005 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2005
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/119603 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Lagrangian vector field and Lagrangian formulation of partial differential equations / M. Chen // Condensed Matter Physics. — 2005. — Т. 8, № 2(42). — С. 317–324. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-119603 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1196032017-06-08T03:07:15Z Lagrangian vector field and Lagrangian formulation of partial differential equations Chen, M. In this paper we consider the Lagrangian formulation of a system of second order quasilinear partial differential equations. Specifically we construct a Lagrangian vector field such that the flows of the vector field satisfy the original system of partial differential equations. В роботі розглядається лагранжове формулювання системи квазілінійних парціальних диференціальних рівнянь другого порядку. Зокрема, представлена конструкція векторного поля Лагранжа у формі, коли потік векторного поля задовільняє вихідні системи парціальних диференціальних рівнянь. 2005 Article Lagrangian vector field and Lagrangian formulation of partial differential equations / M. Chen // Condensed Matter Physics. — 2005. — Т. 8, № 2(42). — С. 317–324. — Бібліогр.: 7 назв. — англ. 1607-324X PACS: 45.20.Jj, 02.30.Jr DOI:10.5488/CMP.8.2.317 http://dspace.nbuv.gov.ua/handle/123456789/119603 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper we consider the Lagrangian formulation of a system of second
order quasilinear partial differential equations. Specifically we construct a
Lagrangian vector field such that the flows of the vector field satisfy the
original system of partial differential equations. |
format |
Article |
author |
Chen, M. |
spellingShingle |
Chen, M. Lagrangian vector field and Lagrangian formulation of partial differential equations Condensed Matter Physics |
author_facet |
Chen, M. |
author_sort |
Chen, M. |
title |
Lagrangian vector field and Lagrangian formulation of partial differential equations |
title_short |
Lagrangian vector field and Lagrangian formulation of partial differential equations |
title_full |
Lagrangian vector field and Lagrangian formulation of partial differential equations |
title_fullStr |
Lagrangian vector field and Lagrangian formulation of partial differential equations |
title_full_unstemmed |
Lagrangian vector field and Lagrangian formulation of partial differential equations |
title_sort |
lagrangian vector field and lagrangian formulation of partial differential equations |
publisher |
Інститут фізики конденсованих систем НАН України |
publishDate |
2005 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/119603 |
citation_txt |
Lagrangian vector field and Lagrangian formulation of partial differential equations / M. Chen // Condensed Matter Physics. — 2005. — Т. 8, № 2(42). — С. 317–324. — Бібліогр.: 7 назв. — англ. |
series |
Condensed Matter Physics |
work_keys_str_mv |
AT chenm lagrangianvectorfieldandlagrangianformulationofpartialdifferentialequations |
first_indexed |
2023-10-18T20:34:58Z |
last_indexed |
2023-10-18T20:34:58Z |
_version_ |
1796150577960321024 |