2025-02-23T00:56:20-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-119636%22&qt=morelikethis&rows=5
2025-02-23T00:56:20-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-119636%22&qt=morelikethis&rows=5
2025-02-23T00:56:20-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T00:56:20-05:00 DEBUG: Deserialized SOLR response

On matrices associated to prime factorization of odd integers

In this paper we introduce in section 5 integral matrices M(n) for any factorization of an odd integer n into r distinct odd primes. The matrices appear in several versions according to a parameter ρ ϵ 2 [0, 1]; they have size 2r * 2r and their rank satisfies e.g. for ρ = 1/2 the inequalities of t...

Full description

Saved in:
Bibliographic Details
Main Author: Bier, T.
Format: Article
Language:English
Published: Інститут фізики конденсованих систем НАН України 2008
Series:Condensed Matter Physics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/119636
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-119636
record_format dspace
spelling irk-123456789-1196362017-06-08T03:03:08Z On matrices associated to prime factorization of odd integers Bier, T. In this paper we introduce in section 5 integral matrices M(n) for any factorization of an odd integer n into r distinct odd primes. The matrices appear in several versions according to a parameter ρ ϵ 2 [0, 1]; they have size 2r * 2r and their rank satisfies e.g. for ρ = 1/2 the inequalities of theorem 4: r + 1 ≤ rank(M(n)) ≤ 2r⁻¹+1; which are obtained using theorem 1 discussed separately in the first few sections. The cases ρ = 0, 1, 1/2 are analyzed in some detail, and various counterexamples for ρ != 0, 1, 1/2 are included. There are several main results, theorem 5 is a duality between the cases ρ = 0 and ρ = 1, and theorem 6 is a periodicity theorem. The most important result perhaps is theorem 8 (valid for ρ = 1/2 only) on the existence of odd squarefree integers n with r odd prime factors such that rank(M(n)) = r + 1 attains the lower bound shown previously. В цiй роботi у параграфi 5 ми вводимо цiлочисельнi матрицi M(n) для довiльної факторизацiї непарного цiлого числа n на r рiзних непарних простих чисел. Матрицi мають декiлька версiй iндексованих параметром ρ ϵ 2 [0, 1], розмiром 2n * 2n, їх ранг задовiльняє, наприклад, для ρ = 1/2, нерiвнiсть з Теореми 4: r+1... , що одержується за допомогою Теореми 1, яка обговорюється окремо у перших параграфах. Випадки ρ = 0, 1, 1/2 аналiзуються бiльш детально, наводяться рiзноманiтнi приклади для ρ != 0, 1, 1/2. Подаємо ряд головних результатiв: Теорема 5, що описує дуальнiсть випадкiв ρ = 0 i ρ = 1, Теорема 6, що описує перiодичнiсть. Можливо найголовнiшою є Теорема 8 (дiйсна тiльки для ρ = 1/2) про iснування непарних, без квадратiв, цiлих чисел n з r непарними простими множниками, таких, що rank(M(n)) = r + 1, тобто досягає нижньої межi, згаданої вище. 2008 Article On matrices associated to prime factorization of odd integers / T. Bier // Condensed Matter Physics. — 2008. — Т. 11, № 4(56). — С. 723-747. — Бібліогр.: 3 назв. — англ. 1607-324X PACS: 02.10.Yn DOI:10.5488/CMP.11.4.723 http://dspace.nbuv.gov.ua/handle/123456789/119636 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we introduce in section 5 integral matrices M(n) for any factorization of an odd integer n into r distinct odd primes. The matrices appear in several versions according to a parameter ρ ϵ 2 [0, 1]; they have size 2r * 2r and their rank satisfies e.g. for ρ = 1/2 the inequalities of theorem 4: r + 1 ≤ rank(M(n)) ≤ 2r⁻¹+1; which are obtained using theorem 1 discussed separately in the first few sections. The cases ρ = 0, 1, 1/2 are analyzed in some detail, and various counterexamples for ρ != 0, 1, 1/2 are included. There are several main results, theorem 5 is a duality between the cases ρ = 0 and ρ = 1, and theorem 6 is a periodicity theorem. The most important result perhaps is theorem 8 (valid for ρ = 1/2 only) on the existence of odd squarefree integers n with r odd prime factors such that rank(M(n)) = r + 1 attains the lower bound shown previously.
format Article
author Bier, T.
spellingShingle Bier, T.
On matrices associated to prime factorization of odd integers
Condensed Matter Physics
author_facet Bier, T.
author_sort Bier, T.
title On matrices associated to prime factorization of odd integers
title_short On matrices associated to prime factorization of odd integers
title_full On matrices associated to prime factorization of odd integers
title_fullStr On matrices associated to prime factorization of odd integers
title_full_unstemmed On matrices associated to prime factorization of odd integers
title_sort on matrices associated to prime factorization of odd integers
publisher Інститут фізики конденсованих систем НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/119636
citation_txt On matrices associated to prime factorization of odd integers / T. Bier // Condensed Matter Physics. — 2008. — Т. 11, № 4(56). — С. 723-747. — Бібліогр.: 3 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT biert onmatricesassociatedtoprimefactorizationofoddintegers
first_indexed 2023-10-18T20:34:57Z
last_indexed 2023-10-18T20:34:57Z
_version_ 1796150581461516288