Negative capacitance and instability at electrified interfaces: Lessons from the study of membrane capacitors

Various models leading to predictions of negative capacitance, C, are briefly reviewed. Their relation to the nature of electric control is discussed. We reconfirm that the calculated double layer capacitance can be negative under σ-control – an artificial construct that requires uniform distribu...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автори: Partenskii, M.B., Jordan, P.C.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2005
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/119639
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Negative capacitance and instability at electrified interfaces: Lessons from the study of membrane capacitors / M.B. Partenskii, P.C. Jordan // Condensed Matter Physics. — 2005. — Т. 8, № 2(42). — С. 397–412. — Бібліогр.: 32 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Various models leading to predictions of negative capacitance, C, are briefly reviewed. Their relation to the nature of electric control is discussed. We reconfirm that the calculated double layer capacitance can be negative under σ-control – an artificial construct that requires uniform distribution of the electrode surface charge density, σ. However, only the total charge q (or the average surface charge density σ) can be experimentally fixed in isolated cell studies (q-control). For those σ where C becomes negative under σ-control, the transition to q-control (i.e. relaxing the lateral change density distribution, fixing its mean value to σ) leads to instability of the uniform distribution and a transition to a non-uniform phase. As an illustration, a “membrane capacitor” model is discussed. This exactly solvable model, allowing for both uniform and inhomogeneous relaxation of the electrical double layer, helps to demonstrate both the onset and some important features of the instability. Possibilities for further development are discussed briefly.