The finite-size scaling study of four-dimensional Ising model in the presence of external magnetic field

The four-dimensional ferromagnetic Ising model in external magnetic field is simulated on the Creutz cellular automaton algorithm using finite-size lattices with linear dimension 4 ≤ L ≤ 8. The critical temperature value of infinite lattice, Tc χ (∞) = 6.680(1) obtained for h = 0 agrees well with...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Ziya Merdan, Cihan Kürkçü, Mustafa K. Öztürk
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2014
Назва видання:Физика низких температур
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/119694
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The finite-size scaling study of four-dimensional Ising model in the presence of external magnetic field / Ziya Merdan, Cihan Kürkçü, Mustafa K. Öztürk // Физика низких температур. — 2014. — Т. 40, № 12. — С. 1360-1365. — Бібліогр.: 31 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-119694
record_format dspace
spelling irk-123456789-1196942017-06-09T03:03:22Z The finite-size scaling study of four-dimensional Ising model in the presence of external magnetic field Ziya Merdan Cihan Kürkçü Mustafa K. Öztürk Низкотемпеpатуpный магнетизм The four-dimensional ferromagnetic Ising model in external magnetic field is simulated on the Creutz cellular automaton algorithm using finite-size lattices with linear dimension 4 ≤ L ≤ 8. The critical temperature value of infinite lattice, Tc χ (∞) = 6.680(1) obtained for h = 0 agrees well with the values Tc(∞) ≈ 6.68 obtained previously using different methods. Moreover, h = 0.00025 in our work also agrees with all the results obtained from h = 0 in the literature. However, there are no works for h ≠ 0 in the literature. The value of the field critical exponent (δ = 3.0136(3)) is in good agreement with δ = 3 which is obtained from scaling law of Widom. In spite of the finitesize scaling relations of |ML(t)| and χ L(t) for 0 ≤ h ≤ 0.001 are verified; however, in the cases of 0.0025 ≤ h ≤ 0.1 they are not verified. 2014 Article The finite-size scaling study of four-dimensional Ising model in the presence of external magnetic field / Ziya Merdan, Cihan Kürkçü, Mustafa K. Öztürk // Физика низких температур. — 2014. — Т. 40, № 12. — С. 1360-1365. — Бібліогр.: 31 назв. — англ. 0132-6414 PACS 05.50.+q, 64.60.Cn, 75.40.Cx, 75.40.Mg http://dspace.nbuv.gov.ua/handle/123456789/119694 en Физика низких температур Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Низкотемпеpатуpный магнетизм
Низкотемпеpатуpный магнетизм
spellingShingle Низкотемпеpатуpный магнетизм
Низкотемпеpатуpный магнетизм
Ziya Merdan
Cihan Kürkçü
Mustafa K. Öztürk
The finite-size scaling study of four-dimensional Ising model in the presence of external magnetic field
Физика низких температур
description The four-dimensional ferromagnetic Ising model in external magnetic field is simulated on the Creutz cellular automaton algorithm using finite-size lattices with linear dimension 4 ≤ L ≤ 8. The critical temperature value of infinite lattice, Tc χ (∞) = 6.680(1) obtained for h = 0 agrees well with the values Tc(∞) ≈ 6.68 obtained previously using different methods. Moreover, h = 0.00025 in our work also agrees with all the results obtained from h = 0 in the literature. However, there are no works for h ≠ 0 in the literature. The value of the field critical exponent (δ = 3.0136(3)) is in good agreement with δ = 3 which is obtained from scaling law of Widom. In spite of the finitesize scaling relations of |ML(t)| and χ L(t) for 0 ≤ h ≤ 0.001 are verified; however, in the cases of 0.0025 ≤ h ≤ 0.1 they are not verified.
format Article
author Ziya Merdan
Cihan Kürkçü
Mustafa K. Öztürk
author_facet Ziya Merdan
Cihan Kürkçü
Mustafa K. Öztürk
author_sort Ziya Merdan
title The finite-size scaling study of four-dimensional Ising model in the presence of external magnetic field
title_short The finite-size scaling study of four-dimensional Ising model in the presence of external magnetic field
title_full The finite-size scaling study of four-dimensional Ising model in the presence of external magnetic field
title_fullStr The finite-size scaling study of four-dimensional Ising model in the presence of external magnetic field
title_full_unstemmed The finite-size scaling study of four-dimensional Ising model in the presence of external magnetic field
title_sort finite-size scaling study of four-dimensional ising model in the presence of external magnetic field
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2014
topic_facet Низкотемпеpатуpный магнетизм
url http://dspace.nbuv.gov.ua/handle/123456789/119694
citation_txt The finite-size scaling study of four-dimensional Ising model in the presence of external magnetic field / Ziya Merdan, Cihan Kürkçü, Mustafa K. Öztürk // Физика низких температур. — 2014. — Т. 40, № 12. — С. 1360-1365. — Бібліогр.: 31 назв. — англ.
series Физика низких температур
work_keys_str_mv AT ziyamerdan thefinitesizescalingstudyoffourdimensionalisingmodelinthepresenceofexternalmagneticfield
AT cihankurkcu thefinitesizescalingstudyoffourdimensionalisingmodelinthepresenceofexternalmagneticfield
AT mustafakozturk thefinitesizescalingstudyoffourdimensionalisingmodelinthepresenceofexternalmagneticfield
AT ziyamerdan finitesizescalingstudyoffourdimensionalisingmodelinthepresenceofexternalmagneticfield
AT cihankurkcu finitesizescalingstudyoffourdimensionalisingmodelinthepresenceofexternalmagneticfield
AT mustafakozturk finitesizescalingstudyoffourdimensionalisingmodelinthepresenceofexternalmagneticfield
first_indexed 2023-10-18T20:35:15Z
last_indexed 2023-10-18T20:35:15Z
_version_ 1796150587534868480