Electron structure of topologically disordered metals

Here two methods for calculating the density of states of electrons in conduction band of disordered metals are investigated. The first one is based on the usage of one-parameter trial electron wave function. The equation for density of states gotten within this method is more general as compared...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автор: Yakibchuk, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2005
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/119749
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Electron structure of topologically disordered metals / P. Yakibchuk // Condensed Matter Physics. — 2005. — Т. 8, № 3(43). — С. 537–546. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Here two methods for calculating the density of states of electrons in conduction band of disordered metals are investigated. The first one is based on the usage of one-parameter trial electron wave function. The equation for density of states gotten within this method is more general as compared to the results of perturbation theory. Electron-ion interaction is applied in the form of electron-ion structure factor, which makes it possible to use this method for a series of systems where potential form factor is not a small value and the perturbation theory fails. It also gives us well-known results of Relel-Schrodinger and Brilliuen-Vigner perturbation theory in case of small potential. Basically, the second approach is a common perturbation theory for pseudo-potential and Green’s function method. It considers the contributions up to the third order. The results of computation for density of states in some non-transition metals are presented. The deviation of density of states causing the appearance of pseudo-gap is clearly recognized.