Electron structure of topologically disordered metals
Here two methods for calculating the density of states of electrons in conduction band of disordered metals are investigated. The first one is based on the usage of one-parameter trial electron wave function. The equation for density of states gotten within this method is more general as compared...
Збережено в:
Дата: | 2005 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2005
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/119749 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Electron structure of topologically disordered metals / P. Yakibchuk // Condensed Matter Physics. — 2005. — Т. 8, № 3(43). — С. 537–546. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-119749 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1197492017-06-09T03:05:05Z Electron structure of topologically disordered metals Yakibchuk, P. Here two methods for calculating the density of states of electrons in conduction band of disordered metals are investigated. The first one is based on the usage of one-parameter trial electron wave function. The equation for density of states gotten within this method is more general as compared to the results of perturbation theory. Electron-ion interaction is applied in the form of electron-ion structure factor, which makes it possible to use this method for a series of systems where potential form factor is not a small value and the perturbation theory fails. It also gives us well-known results of Relel-Schrodinger and Brilliuen-Vigner perturbation theory in case of small potential. Basically, the second approach is a common perturbation theory for pseudo-potential and Green’s function method. It considers the contributions up to the third order. The results of computation for density of states in some non-transition metals are presented. The deviation of density of states causing the appearance of pseudo-gap is clearly recognized. В даній роботі розглядаються два різних підходи до визначення густини станів та енергетичного спектру електронів провідності у невпорядкованих металах. Перший з них грунтується на варіаційному принципі з використанням однопараметричної пробної хвильової функції електронів провідності. Для енергетичного спектру отримано рівняння, яке має більш загальний вигляд у порівнянні з результатами теорії збурень. Електрон-іонна взаємодія входить в теорію через електрон-іонний структурний фактор, що дає змогу застосувати теорію і в тих випадках, коли формфактор потенціалу не є малою величиною і теорія збурень не може бути застосована. Якщо формфактори екранованого потенціалу є малими, то із виведеного варіаційного виразу в часткових випадках отримуються відомі результати теорії збурень Релея-Шредінгера та Бріллюена-Вігнера. Другий підхід пов’язаний з використанням методу функцій Гріна та стандартної теорії збурень за псевдопотенціалом з урахуванням членів до третього порядку включно. Для ряду металів виконані чисельні розрахунки густини електронних станів. Виявлено помітне відхилення відносно вільноелектронного наближення на залежностях густини станів від енергії, що обумовлює появу псевдощілини. 2005 Article Electron structure of topologically disordered metals / P. Yakibchuk // Condensed Matter Physics. — 2005. — Т. 8, № 3(43). — С. 537–546. — Бібліогр.: 7 назв. — англ. 1607-324X PACS: 43.38.Kw DOI:10.5488/CMP.8.3.537 http://dspace.nbuv.gov.ua/handle/123456789/119749 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Here two methods for calculating the density of states of electrons in conduction
band of disordered metals are investigated. The first one is based
on the usage of one-parameter trial electron wave function. The equation
for density of states gotten within this method is more general as compared
to the results of perturbation theory. Electron-ion interaction is applied in
the form of electron-ion structure factor, which makes it possible to use this
method for a series of systems where potential form factor is not a small
value and the perturbation theory fails. It also gives us well-known results
of Relel-Schrodinger and Brilliuen-Vigner perturbation theory in case of
small potential. Basically, the second approach is a common perturbation
theory for pseudo-potential and Green’s function method. It considers the
contributions up to the third order. The results of computation for density of
states in some non-transition metals are presented. The deviation of density
of states causing the appearance of pseudo-gap is clearly recognized. |
format |
Article |
author |
Yakibchuk, P. |
spellingShingle |
Yakibchuk, P. Electron structure of topologically disordered metals Condensed Matter Physics |
author_facet |
Yakibchuk, P. |
author_sort |
Yakibchuk, P. |
title |
Electron structure of topologically disordered metals |
title_short |
Electron structure of topologically disordered metals |
title_full |
Electron structure of topologically disordered metals |
title_fullStr |
Electron structure of topologically disordered metals |
title_full_unstemmed |
Electron structure of topologically disordered metals |
title_sort |
electron structure of topologically disordered metals |
publisher |
Інститут фізики конденсованих систем НАН України |
publishDate |
2005 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/119749 |
citation_txt |
Electron structure of topologically disordered metals / P. Yakibchuk // Condensed Matter Physics. — 2005. — Т. 8, № 3(43). — С. 537–546. — Бібліогр.: 7 назв. — англ. |
series |
Condensed Matter Physics |
work_keys_str_mv |
AT yakibchukp electronstructureoftopologicallydisorderedmetals |
first_indexed |
2023-10-18T20:35:20Z |
last_indexed |
2023-10-18T20:35:20Z |
_version_ |
1796150593068204032 |